1
Міністерство освіти і науки України
Вінницький національний технічний університет
Інститут АЕКСУ
Кафедра АІВТ
Контрольна робота
з дисципліни:
“Моделювання на ЕОМ”
Дослідження однокрокових методів розвязання звичайних диференційних рівнянь
Виконав: ст. гр. 1АМ-04_____ Балко О.О.
Перевірив: доцент каф.АІВТ_____ Кабачій В.В.
2007
Вступ
1 Короткі теоретичні відомості
2 Алгоритми методів
2.1 Блок-схеми алгоритмів розвязку даного диференційного рівняння
3 Вхідні та вихідні дані1
4. Аналіз результатів моделювання
4.1 Розвязок диференціального рівняння в Mathcad
5. Інструкція користувачу
Висновки
Література
Додаток А. Лістинг програми
Вступ
На даний момент велика роль в розвитку сучасного світу відводиться підвищенню технічного рівня обчислювальної техніки, пристроїв і засобів автоматизації. Це передбачає розвиток виробництва і широке використання промислових роботів, систем автоматичного управління з використанням мікропроцесорів і мікро-ЕОМ, створення гнучких автоматизованих виробництв. Розвязок цих задач потребує широкого упровадження в інженерну практику методів обчислювальної математики.
Обчислювальна математика заснована на чисельних методах, придатних до застосування при розрахунках на ЕОМ. Сучасні ЕОМ дозволили дослідникам значно підвищити ефективність математичного моделювання складних задач науки і техніки. Нині методи дослідження проникають практично в усі сфери людської діяльності, а математичні моделі стають засобами пізнання.
Значення математичних моделей неперервно зростає у звязку з тенденціями до оптимізації технічних пристроїв і технологічних схем планування експерименту. Реалізація моделей на ЕОМ здійснюється за допомогою різноманітних методів обчислювальної математики, яка неперервно удосконалюється.
В даній роботі розглянуті однокрокові методи розвязання звичайних диференційних рівнянь(на прикладі диференційного рівняння першого порядку), а саме прямий та зворотній методи Ейлера, та метод Рунге-Кутта.
Розробленна програма дозволяє розвязати вказане диференційне рівняння методами Ейлера (прямим та зворотним) та Рунге-Кутта, порівняти їх результати та визначити похибки
1. Короткі теоретичні відомості
Найбільш простим однокроковим методом, який потребує мінімальних затрат обчислювальних ресурсів, але дає змогу обчислювати результат із порівняно низькою точністю, є метод Ейлера.
В цьому методі для оцінки наступної точки на кривій використовується лише один лінійний член в формулі Тейлора,
(1)
де визначається з початкового рівняння.
Цей процес можна розповсюдити на наступні кроки:
(2)
Метод Ейлера є методом першого порядку
(3)
де , , , - визначається як
(4)
для всіх і .
Метод Ейлера, крім значної похибки зрізання часто буває нестійким (малі локальні похибки призводять до значного збільшення глобальної).
Цей метод можна вдосконалити різними способами.
Найбільш відомі два з них: виправлений метод Ейлера і модифікований метод Ейлера (в літературі зустрічаються інші назви цих методів, наприклад, модифікований метод Ейлера й удосконалений метод ламаних).
Ітераційні формули для цих методів мають вигляд, відповідно:
(5)
І
(6)
Де
(7)
Це методи другого порядку, їх похибка має третій ступінь, що досягається покращенням апроксимації похідної. Ідея полягає у спробі зберегти або оцінити член другого порядку у формулі Тейлора. Однак збільшення точності вимагає додаткових витрат машинного часу на обчислення . Ще більш висока точність може бути досягнута при обчисленні вищих похідних і збереженні більшої кількості членів ряду Тейлора. Такими методами є методи Рунге-Кутта.
Принцип на якому побудований модифікований метод Ейлера, можна пояснити, користуючись рядом Тейлора і зберігаючи в ньому член з . Апроксимація другої похідної здійснюється кінцевою різницею
(8)
Аналогічно обчисленню другої похідної в кінцево-різницевому вигляді можна обчислити більш високі похідні: значення n-ї за значеннями попередньої (n-1)-ї.
Метод Рунге-Кутта дає набір формул для обчислення координат внутрішніх точок, які потрібні для реалізації цієї ідеї. Оскільки існує ряд способів знаходження цих точок, то метод Рунге-Кутта обєднує цілий клас методів для розвязання диференціальних рівнянь першого порядку.
Найбільш розповсюджений класичний метод четвертого порядку точності:
(9)
Де
(10)
(11)
Метод Ейлера і його модифікації ще називають методами Рунге-Кутта першого і другого порядку. Метод Рунге-Кутта має значно більш високу точність, що дозволяє збільшити крок розвязання. Його максималу величину визначає допустима похибка. Такий вибір часто здійснюється автоматично і включається як складова частина, вбудована в алгоритм, побудований за методом Рунге-Кутта.
Раніше було відзначено, що помилка зрізання при використанні методу Рунге-Кутта n-го порядку . Обчислення верхніх границь для коефіцієнта с являє собою складну задачу, повязану з необхідністю оцінки ряду додаткових параметрів. Існує декілька способів для оперативного обчислення с. Найбільшого поширення набув екстраполяційний метод Річардсона (ще його називають методом Рунге), коли послідовно знаходять з кроком h і з кроком , а після цього прирівнюють отримані величини та визначають с з рівняння:
(12)
що відповідає точному значенню .
Отримаємо оціночне співвідношення:
(13)
2. Алгоритми методів
В курсовій роботі розроблена програма, що розвязує задане диференційне рівняння першого порядку трьома методами:
Ейлера : - прямим
- Зворотнім та Рунге-Кутта
Також, програма рахує похибку на кроці та загальну похибку методу.
В основі алгоритму лежить використання однокрокових методів, в основі яких лежить знаходження наступної точки на кривій лише за значенням попередньої. Основу методу складає розкладання функції в ряд Тейлора.
Програма використовує основні функції Borland C++ 3.1, а саме:
Цикли: while ()
for()
Оператори безумовного переходу: If ()
else
switch()
В основі програми лежить загальний алгоритм розвязку диференційних рівнянь однокроковими методами.
Алгоритм:
1.за початковим значенням x,y знаходимо наступну точку кривої y=f(x) при кроці h=0.1;
2.знаходимо нові значення x,y;
3.перевряємо чи х належить проміжку, на якому шукаються розвязки: якщо х належить цьому проміжку, то алгоритм повторюється з пункту 1, де замість початкових значень x,y; використовуються нові(обчислені в пункті 2); якщо ні, то алгоритм припиняє свою роботу ;
4.аналогічно шукаються розвязки цього ж рівняння , але при кроці h=0.05;
5.Знаходження похибки зводиться до:
· знаходження C за формулою
с=(y1-y2))/(St(h1,p+1)-St(h2,p+1))
де y1,y2-значення в одній тій самій точці розвязку,
але обчисленні з різним кроком;
St - функція піднесення до степеня, де р+1 степінь, а h1(h2) числа, що підносяться до степеня.
· знаходження глобальної похибки, шляхом додавання похибок знайдених на кожному кроці обчислень;
Для данного завдання, формули знаходження наступних значень за попердніми мають вигляд:
· прямий метод Ейлера:
yn:=yn+h*(yn+0.7*xn+1.2);
· зворотній метод Ейлера:
yn:=yn+h*(0.7*xn+1.2)/(1-h);
метод Рунге-Кутта
yn=yn+((k0+2*k1+2*k2+k3)/6);
2.1 Блок-схеми алгоритмів розвязку даного диференційного рівняння
3 Вхідні та вихідні дані
Вхідними даними програми є: крок обчислення і задане диференціальне рівняння.
Вихідними даними програми є: графіки, таблиця з рішеннями диференціального рівняння і похибки обчислень.
4. Аналіз результатів моделювання
Розроблена програма дозволяє розвязувати дане диференційне рівняння трьома методами. З результатів обчислень ми можемо перевірити функціональність програми і точність кожного з методів.
Прямий метод Ейлера:
|
Крок 0.1
|
Крок 0.05
|
Похибка
|
|
1.000000
|
1.000000
|
0.000000
|
|
1.220000
|
1.227250
|
0.009667
|
|
1.469000
|
1.484968
|
0.030958
|
|
1.749900
|
1.776278
|
0.066128
|
|
2.065890
|
2.104621
|
0.117769
|
|
2.420479
|
2.473795
|
0.188856
|
|
2.817527
|
2.887984
|
0.282799
|
|
3.261280
|
3.351802
|
0.403495
|
|
3.756408
|
3.870337
|
0.555401
|
|
4.308049
|
4.449197
|
0.743598
|
|
|
Даний метод не є точним на що вказує глобальна похибка 0.743598.
Зворотній метод Ейлера :
|
Крок 0.1
|
Крок 0.05
|
Похибка
|
|
1.000000
|
1.000000
|
0.000000
|
|
1.244444
|
1.239515
|
0.006572
|
|
1.523827
|
1.512468
|
0.021717
|
|
1.842030
|
1.822472
|
0.047795
|
|
2.203367
|
2.173528
|
0.087580
|
|
2.612630
|
2.570073
|
0.144322
|
|
3.075144
|
3.017020
|
0.221821
|
|
3.596827
|
3.519814
|
0.324504
|
|
4.184252
|
4.084490
|
0.457521
|
|
4.844725
|
4.717731
|
0.626846
|
|
|
Даний метод є більш точним за прямий метод Ейлера так як його глобальна похибка складає 626846.
Метод Рунге-Кутта
|
Крок 0.1
|
Крок 0.05
|
Похибка
|
|
1.000000
|
1.000000
|
0.000000
|
|
1.229469
|
1.229644
|
0.000026
|
|
1.489718
|
1.489644
|
0.000103
|
|
1.783814
|
1.783663
|
0.000259
|
|
2.115130
|
2.114874
|
0.000524
|
|
2.487374
|
2.486981
|
0.000930
|
|
2.904625
|
2.904060
|
0.001513
|
|
3.371367
|
3.370593
|
0.002312
|
|
3.892533
|
3.891508
|
0.003370
|
|
4.473544
|
4.472224
|
0.004732
|
|
|
Даний метод є найточнішим серед прямого і зворотного методу Ейлера, його глобальна похибка дорівнює 0.004732.
Звідси можна зробити висновок; найбільш простим однокроковим методом, потребуючим мінімальних затрат розрахункових ресурсів, і який є дуже точним по відношенню до метода Ейлера є метод Рунге-Кутта. Метод Ейлера, крім значної похибки усічки, часто буває нестійким (малі локальні помилки приводять до значного збільшення глобальної).
4.1. Розвязок диференціального рівняння в Mathcad
Звіримо результати обчислень. Візьмемо найточніший метод Рунге-Кутта та результат отриманий в Mathcad відповідно: 4.472 та 4.603 похибка 0.131
Тобто можна зробити висновок що результати обчислень програми і обчислення Mathcad майже співпадають.
5. Інструкція користувачу
Для завантаження необхідно переписати з дискети файл kursova.exe і запустити його, для роботи програми потрібен графічний драйвер egavga.bgi
Після завантаження слід натиснути клавішу Enter потрібну кількість разів щоб обрати потрібний метод
Після натиснення клавіші Esc відбудеться вихід з програми.
Висновки
В результаті виконання даної курсової роботи ми наглядно оцінили кожний з методів розвязку диференційного рівняння і прийшли до висновку, що найточнішим методом з найменшою глобальною похибкою є метод Рунге-Кутта , а прямий метод Ейлера і зворотній метод Ейлера, є не досить точними. Але всі ці методи є простими однокроковими методами, що потребують мінімальні затрати розрахункових ресурсів. Тому можна сказати, що методи Ейлера краще використовувати для попередніх(приблизних) розрахунків, а щоб отримати точний результат можна застосувати більш точний метод Рунге-Кутта.
Література
В.Т. Маликов, Р.Н. Кветный . Вычислительные методы и применение ЭВМ . Учебное пособие -- К.: Высш. шк. Главное издательство,1989.-213 с .
В.Е. Краскевич, К.Х. Зеленский, В.И. Гречко . Численные методы в инженерных исследованиях. -- К.: Высш. шк. Главное издательство, 1986.--263 с .
|