Главная   Добавить в избранное Проблемы стратосферного озона | реферат


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней


 





Проблемы стратосферного озона - реферат


Категория: Рефераты
Рубрика: Биология и естествознание
Размер файла: 185 Kb
Количество загрузок:
28
Количество просмотров:
982
Описание работы: реферат на тему Проблемы стратосферного озона
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



18

Министерство образования и науки Российской Федерации

Волгоградский Государственный Университет

Юридический Факультет

Реферат

По дисциплине: Концепция современного естествознания

Тема: Проблемы стратосферного озона

Волгоград 2009

Оглавление

  • Введение
    • 1. Атмосфера и ее строение
    • 2. Химические и биологические особенности озона
    • 3. Условия образования и защитная роль озонового слоя
    • 4. Химические процессы в тропосфере
    • 5. Причины образования “озоновой дыры”
    • 6. Пути решения проблем
    • Литература

Введение

С возникновением человеческой цивилизации появился новый фактор, влияющий на судьбу живой природы. Он достиг огромной силы в текущем столетии и особенно в последнее время. 5 млрд. наших современников оказывают на природу такое же по масштабам воздействие, какое могли оказать люди каменного века, если бы их численность составила 50 млрд. человек.

С тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширялся объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества.

Атмосфера в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает состояние воздушного пространства нашей планеты. В настоящее время существует 3 основные глобальные экологические проблемы атмосферы: глобальное потепление или "парниковый эффект", кислотные дожди и разрушение озонового слоя.

Над миром нависла реальная угроза глобального экологического кризиса, понимаемая всем населением планеты, а реальная надежда на его предотвращение состоит в непрерывном экологическом образовании и просвещении людей.

Целью настоящей работы явилось обобщение литературных данных о причинах и последствиях разрушения озонового слоя, а также способах решения проблемы образования “озоновых дыр".

1. Атмосфера и ее строение

Атмосфемра (от. др. - греч. ?фмьт - пар и уцб?сб - шар) - газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично кору, внешняя граничит с околоземной частью космического пространства.

Атмосфера состоит из нескольких концентрических слоев, отличающихся один от другого по температурным и иным условиям. Нижняя часть атмосферы, до высоты 10-15 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха, носит название тропосферы. Средняя годовая температура воздуха у земной поверхности около +26° на экваторе и около - 23° на северном полюсе. Для нее характерно, что температура здесь с высотой падает в среднем на 0,6°/100 м (в отдельных случаях распределение температуры по вертикали варьирует в широких пределах). В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы. Давление воздуха на верхней границе тропосферы соответственно ее высоте в 5-8 раз меньше, чем у земной поверхности. Следовательно, основная масса атмосферного воздуха находится именно в тропосфере. Процессы, происходящие в тропосфере, имеют непосредственное и решающее значение для погоды и климата у земной поверхности.

Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.

Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше. С этой точки зрения она может быть названа озоносферой. Рост температуры с высотой в стратосфере объясняется именно поглощением солнечной радиации озоном.

Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. Вследствие быстрого падения температуры с высотой в мезосфере сильно развита турбулентность. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.

Рис.1. Строение атмосферы

На верхней границе мезосферы давление воздуха раз в 200 меньше, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, заключается больше чем 99,5% всей массы атмосферы. На вышележащие слои приходится ничтожное количество воздуха.

Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть - экзосфера, переходящая в земную корону. Воздух в ионосфере чрезвычайно разрежен.

Ионосфера, как говорит само название, характеризуется очень сильной степенью ионизации воздуха. содержание ионов здесь во много раз больше, чем в нижележащих слоях, несмотря на сильную общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы окиси азота и свободные электроны. Их содержание на высотах 100-400 км - порядка 1015-106 на кубический сантиметр.

Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°.

Атмосферные слои выше 800-1000 км выделяются под названием экзосферы (внешней атмосферы). Недавно предполагалось, что экзосфера, и с нею вообще земная атмосфера, кончается на высотах порядка 2000-3000 км. Но из наблюдений с помощью ракет и спутников создалось представление, что водород, ускользающий из экзосферы, образует вокруг Земли так называемую земную корону, простирающуюся более чем до 20 000 км. Конечно, плотность газа в земной короне ничтожно мала. На каждый кубический сантиметр здесь приходится в среднем всего около тысячи частиц. Но в межпланетном пространстве концентрация частиц (преимущественно протонов и электронов) по крайней мере в десять раз меньше.

С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности.

Этот пояс состоит из электрически заряженных частиц - протонов и электронов, захваченных магнитным полем Земли и движущихся с очень большими скоростями. Их энергия - порядка сотен тысяч электрон-вольт. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.

2. Химические и биологические особенности озона

Озон является аллотропной модификацией кислорода. Его молекула диамогнитна (в отличие от парамагнитной О2), имеет угловую форму, связь в молекулу является делокализованной трехцентровой, предполагается также донорно-акцепторный механизм образования химических связей в озоне. Характер химических связей в озоне обусловливает его неустойчивость (через определенное время озон самопроизвольно переходит в кислород: 2О3 - >3О2) и высокую окислительную способность (озон способен на ряд реакций в которые молекулярный кислород не вступает). Окислительное действие озона на органические вещества связанно с образованием радикалов:

RH+ О32 +OH

Эти радикалы инициируют радикально цепные реакции с биоорганическими молекулами (липидами, белками, нуклеиновыми кислотами), что приводит к гибели клеток. Применение озона для стерилизации питьевой воды основано на его способности убивать микробы. Озон не безразличен и для высших организмов. Длительное пребывание в атмосфере, содержащей озон (например, в кабинетах физиотерапии и кварцевого облучения) может вызвать тяжелые нарушения нервной системы. Поэтому, озон в больших дозах является токсичным газом. Предельно допустимая концентрация его в воздухе рабочей зоны - 0,0001 мг/литр. Загрязнение озоном воздушной среды происходит при озонировании воды, вследствие его низкой растворимости.

3. Условия образования и защитная роль озонового слоя

Известно, что основная часть природного озона сосредоточена в стратосфере на высоте от 15 до 50 км над поверхностью Земли. Озоновый слой начинается на высотах около 8 км над полюсами (или 17 км над Экватором) и простирается вверх до высот приблизительно равных 50-ти км. Однако плотность озона очень низкая, и если сжать его до плотности, которую имеет воздух у поверхности земли, то толщина озонового слоя не превысит 3,5 мм. Озон образуется, когда солнечное ультрафиолетовое излучение бомбардирует молекулы кислорода

2 - > О3).

Больше всего озона в пятикилометровом слое на высоте от 20 до 25 км, который называют озоновым. Концентрация озона в этом слое невелика, однако общее его количество в стратосфере достигает очень внушительной цифры - более 3 млрд. тонн. Образование озона из обычного двухатомного кислорода требует довольно большой энергии - почти 150 кДж на каждый моль. Такая насыщенность озона энергией делает его взрывоопасным. Как же образуется это вещество? Основная реакция - взаимодействие обычного двухатомного кислорода с атомарным:

О2 + О=О3.

Атомарный кислород - еще более насыщенное энергией вещество - образуется при электрических разрядах в кислороде и воздухе, а в стратосфере появляется под действием постоянного и довольно мощного ультрафиолетового излучения Солнца:

Образование озона происходит непрерывно одновременно с его расходованием, поэтому усредненная концентрация озона в течение длительного времени оставалась постоянной. Процесс образования и разложение озона называют циклом Чемпена. Результатом процессов в цикле является переход солнечной энергии в теплоту. Озоновый цикл ответственен за повышение температуры на высоте 15 км.

Защитная роль озонового слоя. Озон поглощает часть ультрафиолетового излучения Солнца: причем широкая полоса его поглощения (длина волны 200-300 нм) включает и губительное для всего живого на Земле излучение.

4. Химические процессы в тропосфере

В химических превращениях различных загрязняющих веществ в тропосфере ключевое место занимает OH - радикал к образованию которого ведут несколько процессов. Основной вклад дают фотохимические реакции с участие озона:

O3+h=O2+O

O+H2O=OH+OH

В образовании озона в тропосфере участвуют оксиды озона:

NO2+ h (L<400нм) =NO+O

O+O2=O3

О влиянии фотохимических реакций на содержание озона в тропосфере свидетельствует 50% уменьшение концентрации озона при солнечном затмении:

O3+NO=NO2+O2

O3+NO2=NO3+O2

В образовании ОН радикалов на высоте 30 км. участвуют пары воды:

Н2 О+h=H+OH

H2 O+O=2OH

Определённый вклад в образование ОН-групп в тропосфере могут давать реакции фоторазложения

HNO2, HNO3, H2O2

HNO2+h (L<400нм) =NO+OH

HNO3+h (L<330нм) =NO2+OH

H2O2+h (L<330нм) =2OH

В тропосферных процессах гидроксильный радикал играет ключевую роль в окислении углеводородов:

RH+OH=HOH+R

R+O2=RO2

RO2+HOH=ROOH+OH

Наиболее типичным и основным по массе органическим загрязнителем атмосферы является CH4. Окисление CH4 под действием ОН протекает сопряженно с окисление NO. Соответствующий радикально-цепной механизм включает общую для всех тропосферных процессов стадию инициирования ОН и цикл экзотермических реакций продолжение цепи, характерных для реакции окисления органических соединений:

ОН+СН42О +СН3

СН32=СН3 О2

СН3 О2+NО=СН3 О+NО2

СН3 О+О2=СН2 О+НО2

В результате реакция окисления СН4 в присутствии NО как катализатора и при воздействии солнечного света с длиной волны 300-400нм запишется в виде:

СН4+4О2=СН2 О+Н2 О+2О3

т.е. окисление метана (и других органических веществ) приводит к образованию тропосферного озона. Скорость этого процесса тем больше, чем выше концентрация NО. Расчеты показывают, что антропогенный выброс NО удваивает приземную концентрацию О3, а рост утечки СН4 многократно опережающий по темпам роста другие виды загрязнений тропосферы приводит к ещё большему увеличению концентрации О3 по сравнению с переносом О3 из стратосферы.

Рост приземной концентрации озона представляет опасность для зеленой растительности и животного мира.

Образующийся при окислении метана формальдегид окисляется далее радикалами ОН с образованием СО. Этот канал вторичного загрязнения атмосферы моноксидом углерода сравним с поступление СО от неполного сгорания ископаемого топлива.

ОН+СН2 О=Н2 О+НСО

НСО+О2=НО2+СО

5. Причины образования “озоновой дыры”

Летом и весной концентрация озона повышается; над полярными областями она всегда выше, чем над экваториальными. Кроме того, она меняется по 11-летнему циклу, совпадающему с циклом солнечной активности. Все это было уже хорошо известно, когда в 1980-х гг. наблюдения показали, что над Антарктикой год от года происходит медленное, но устойчивое снижение концентрации стратосферного озона. Это явление получило название "озоновая дыра" (хотя никакой дырки в собственном значении этого слова, конечно, не было) и стало внимательно исследоваться.

Позднее, в 1990-е гг., такое же уменьшение стало происходить и над Арктикой. Феномен Антарктической “озоновой дыры” пока не понятен: то ли “дыра" возникла в результате антропогенного загрязнения атмосферы, то ли это естественный геоастрофизический процесс.

Сначала предполагали, что на озон влияют частицы, выбрасываемые при атомных взрывах; пытались объяснить изменение концентрации озона полетами ракет и высотных самолетов. В конце концов было четко установлено, что причина нежелательного явления - реакции с озоном некоторых веществ, производимых химическими заводами. Это в первую очередь хлорированные углеводороды и особенно фреоны - хлорфторуглероды, или углеводороды, в которых все или большая часть атомов водорода, заменены атомами фтора и хлора.

Хлорфторуглероды широко применяются в современных бытовых и промышленных холодильниках (в России их поэтому называют "хладонами"), в аэрозольных баллончиках, как средства химической чистки, а некоторые производные - для тушения пожаров на транспорте. Используются они и как пенообразователи, а также для синтеза полимеров. Мировое производство этих веществ достигло почти 1,5 млн. т.

Будучи легколетучими и довольно устойчивыми к химическим воздействиям, хлорфторуглероды после использования попадают в атмосферу и могут находиться в ней до 75 лет, достигая высоты озонового слоя. Здесь под действием солнечного света они разлагаются, выделяя атомарный хлор, который и служит главным "нарушителем порядка" в озоновом слое.

CF2 Cl2=CF2 Cl+Cl

Последующие реакции CF2 Cl с О2 и h приводят к отщеплению второго атома хлора.

Хлор "съедает" и озон, и атомарный кислород за счет протекания довольно быстрых реакций:

О3 + Сl = О2 + ClO

СlO + O = Cl + O2

Причем последняя реакция приводит к регенерации активного хлора. Хлор, таким образом, даже не расходуется, разрушая озоновый слой.

Предполагается, что из-за разрушительного действия хлора и аналогично действующего брома к концу 1990-х гг. концентрация озона в стратосфере снизилась на 10%.

Озоноразрушающий потенциал некоторых веществ.

Разрушающий потенциал (усл. ед)

Продолжительность жизни (лет)

CFCl 1

1.0

75

CFCl 2

1.0

111

CFCl 3

0.8

90

CCl 4

1.0

185

C2FCl 5

0.6

380

HCFCl 2

0.05

20

Метилхлороформ

0.10

6.5

Четырехлористый углерод

1.06

50

Венская конвенция. В 1985 году британские ученые обнародовали данные, согласно которым в предшествующие восемь лет были обнаружены увеличивающиеся каждую весну озоновые дыры над Северным и Южным полюсами.

Ученые предложили три теории, объяснявшие причины этого феномена:

разрушение озонового слоя окисями азота - соединениями, образующимися естественным образом на солнечном свету;

О3+NО NО32

воздушные потоки из нижних слоев атмосферы при движении вверх расталкивают озон;

разрушение озона соединениями хлора.

В 1987 г. был принят Монреальский протокол, по которому определили перечень наиболее опасных хлорфторуглеродов, и страны-производители хлорфторуглеродов обязались снизить их выпуск. В июне 1990 г. в Лондоне в Монреальский протокол внесли уточнения: к 1995 г. снизить производство фреонов вдвое, а к 2000 г. прекратить его совсем.

Сегодня уже разработаны и выпускаются экологически безопасные фреоны и их заменители, но озоновый слой продолжает находиться в критическом состоянии:

Установлено, что на содержание озона оказывают влияние азотсодержащие загрязнители воздушной среды:

2NО+О2 = 2NО2

О2+NО2 = NО32

3+NО2 = N2 О5

N2 О52 О = 2НNО3

Происхождение NО, ОН и Сl в стратосфере возможно, как в результате естественных процессов, так и в результате антропогенных загрязнений. Так, NО образуется в двигателях внутреннего сгорания. Соответственно запуск ракет и сверх звуковых самололетов приводит к разрушению озонового слоя. В любом двигателе внутреннего сгорания развиваются настоль высокие температуры, что из атмосферного кислорода и азота образуется NО: N22 2NО

Источником NО в стратосфере служит также газ N2 О, который устойчив в тропосфере, а в стратосфере распадается под действием жесткого УФ-излучения:

N2 О+h (230нм) = N2+О

N2 O+O = 2NO

Разрушение N2О в стратосфере осуществляется и по реакциям:

N2 О+h (250нм) = N2

N2 O+O = N2+O2

6. Пути решения проблем

Чтобы начать глобальное восстановление нужно уменьшить доступ в атмосферу всех веществ, которые очень быстро уничтожают озон и долго там хранятся.

Также мы - все люди должны это понимать и помочь природе включить процесс восстановления озонового слоя, нужны новые посадки лесов, хватит вырубать лес для других стран, которые почему-то не хотят вырубать свой, а делают на нашем лесе деньги.

Для восстановления озонового слоя его нужно подпитывать. Сначала с этой целью предполагалось создать несколько наземных озоновых фабрик и на грузовых самолетах "забрасывать" озон в верхние слои атмосферы. Однако этот проект (вероятно, он был первым проектом "лечения" планеты) не осуществлен.

Иной путь предлагает российский консорциум "Интерозон": производить озон непосредственно в атмосфере. Уже в ближайшее время совместно с немецкой фирмой "Даза" планируется поднять на высоту 15 км аэростаты с инфракрасными лазерами, с помощью которых получать озон из двухатомного кислорода.

Если этот эксперимент окажется удачным, в дальнейшем предполагается использовать опыт российской орбитальной станции "Мир" и создать на высоте 400 км несколько космических платформ с источниками энергии и лазерами. Лучи лазеров будут направлены в центральную часть озонового слоя и станут постоянно подпитывать его. Источником энергии могут быть солнечные батареи. Космонавты на этих платформах потребуются лишь для периодических осмотров и ремонта.

У этого проекта был предшественник - американская СОИ (стратегическая оборонная инициатива) с планом использования мощных лазеров для "звездных войн".

Осуществится ли грандиозный мирный проект, покажет время. Но и физическая химия, и космонавтика уже готовы к тому, чтобы начать восстанавливать комфортное для жизни химическое равновесие на нашей планете.

Принимая во внимание чрезвычайность ситуации, необходимо:

расширить комплекс теоретических и экспериментальных исследований по проблеме сохранения озонового слоя;

провести первую Международную научную конференцию по проблемам сохранения озонового слоя активными способами;

создать Международный фонд сохранения озонового слоя активными способами;

провести Международный телемост на тему сохранения озонового слоя с участием ведущих ученых, политических, религиозных и общественных деятелей;

организовать Международный комитет для выработки стратегии выживания человечества в экстремальных условиях.

Литература

1. Глинка Н.Л. Общая химия. Издательство "химия". 1990г.

2. Гусакова Н.В. Химия окружающей среды, Ростов-на-Дону: Феникс, 2004, 192 с.

3. Лавров С.Б. Глобальная проблема современности. Санкт-Петербург, 1995г.

4. Хромов С.П., Петросянц М.А. Метеорология и климатология. М.: Мысль, 1985 г.









 
 
Показывать только:




Портфель:
Выбранных работ  


Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Проблемы стратосферного озона | реферат

СтудентБанк.ру © 2014 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег