Главная   Добавить в избранное Перспективы создания киборгов | курсовая работа


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней


 





Перспективы создания киборгов - курсовая работа


Категория: Курсовые работы
Рубрика: Биология и естествознание
Размер файла: 673 Kb
Количество загрузок:
37
Количество просмотров:
1275
Описание работы: курсовая работа на тему Перспективы создания киборгов
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



45

Курсовая работа

По дисциплине: Экология человека

На тему: Перспективы создания киборгов

СОДЕРЖАНИЕ

Введение

Человек превращается в киборга

Электронная панацея

Как отражается ощущение, восприятие, представление в нейронах

Полная схема простейшего искусственного интеллекта и описание его мышления

Первый в мире Киборг

Бионический чип

Заключение

Список литературы

ВВЕДЕНИЕ

С развитием современных технологий резко возросли возможности человека во многих сферах его деятельности, что позволило решить ряд ранее не решаемых задач, связанных в первую очередь с сохранением жизни человека, исследованием и профилактикой неизлечимых ранее болезней, изучением биохимических процессов на фундаментальном уровне.

Последние достижения современной науки в области кибернетики, физики, математики, химии, биологии и множества смежных отраслей позволили взглянуть по-новому на мир и организацию протекающих в нём процессов как на молекулярном, так и на биосферном уровнях. Возросли объёмы и потоки информации в современной окружающей среде, что повлекло за собой необходимость создания мощных электронных вычислительных комплексов на базе ЭВМ для их обработки и анализа, т.к возможности человека в данном аспекте оказались недостаточны из-за его неспособности быстро ими оперировать.

Развитие электроники приведет к созданию искусственного интеллекта. Вдруг в аварии поврежден и мозг, и тело. Врачи перезагружают информацию из мозга в новый мозг, искусственный. И тут же дают другое тело. А может быть после аварии человек захочет получить не тело человека, а электронно-механическую конструкцию. Зачем кушать, ходить в туалет, болеть? Мозг то ведь мой, память моя. Еще раз стоп! Где эта грань? Где предел? Где это лезвие бритвы, которое нельзя переступать? Когда человек - это человек, а когда он уже не человек? Этот вопрос в ближайшие десятилетия предстоит решать деятелям науки, религии, политики. Потому что в результате развития электроники и биологии с медициной появится возможность создавать роботов и киборгов. Они уже и сейчас есть. Роботы, пока примитивные, уже есть. Киборги тоже есть. Людям уже вживляют кардиостимуляторы, устройства для улучшения слуха, микрочипы. На очереди устройства для зрения для незрячих людей

Киборг - не машина. Киборг - смесь машины и человека. Человек с искусственным зрением, слухом, сердцем, почкой, рукой, ногой и другими частями тела - это киборг. Понятие киборг подразумевает некое качественное отличие или же это просто человек с некоей искусственной (механической) частью или частями тела.

Вовсю ведётся работа над протезом руки, соединенным с нервными окончаниями. Такой протез способен ощущать тепло, и двигаться по команде из мозга. Создано уже устройство способное преобразовывать звук в электрические сигналы и передавать их в мозг. Пока это полезно только для инвалидов. Но технологии развиваются стремительно и скоро можно будет создавать органы лучше тех, что дала нам природа. Не говоря уж о том, что они будут ремонтоспособны и не будут необратимо стареть.

Имеет ли для нас значение то, что мы сделаны из мяса и костей? Перестанем ли мы быть сами собой если поменяем кисть руки на более совершенное устройство? Всю руку? Тело? Мозг?

В конце концов все наши ощущения это электрохимические сигналы поступающие в мозг. Так ли уж важно что служит их источником? Поверьте, это не фантазии это реальность на пороге которой мы стоим. И если посмотреть правде в глаза, то инвалид с протезом руки, который ощущает тепло, это киборг. Новая раса.

ЧЕЛОВЕК ПРЕВРАЩАЕТСЯ В КИБОРГА

Человек всегда хотел лучше видеть, больше слышать и острее чувствовать. И изобретал для этого приборы ночного видения, цифровые слуховые аппараты и бинокли, а также различные другие приспособления. В эпоху цифровых технологий всё больше процессов контролируется средствами ЭВМ, обширно внедряется технология «расширенной реальности», или, кратко, AR (Augmented Reality).

НАХАЛЬНАЯ VR И ДЕЛИКАТНАЯ AR

По сути дела речь идёт о фундаментально ином типе интерфейса для общения человека и компьютера. Под термином «расширенная реальность» в первую очередь понимают компьютерные дисплеи, добавляющие виртуальную информацию в поток традиционных сенсорных восприятий человека. Большинство нынешних AR-разработок и исследований сосредоточенно на создании устройств «сквозного видения», которые как правило, крепится к голове и накладывают дополнительную графику и текст на картины окружающей человека обстановки. В принципе, можно добавлять и такие сенсорные воздействия, как звуки или тактильные ощущения, но подавляющая часть информации о мире поступает к нам через зрение, поэтому имеет смысл сфокусироваться на визуальных технологиях расширения реальности. Главная особенность AR-систем в том, как они представляют пользователю информацию: не на отдельном дисплее, а непосредственно интегрируя в естественные механизмы восприятия. Здесь сводятся к минимуму все мысленные усилия, необходимые человеку для переключения от реального мира к компьютерному изображению. В сущности, новый компьютерный интерфейс и способ видения мира становится одним и тем же. Реальный ярчайший пример, демонстрирующий возможности AR, - медицинские приложения. Зрение врачей начинает получать эквивалент рентгена, позволяя в реальном масштабе наблюдать результаты сканирования внутренних органов, наложенные на соответствующую часть тела больного. «Прозрачное» тело, к примеру, даёт возможность эффективно проводить лапороскопические операции с минимальным хирургическим вмешательством. AR - системы постоянно отслеживают позицию и ориентацию головы пользователя, чтобы накладываемый виртуальный материал максимально аккуратно совмещался с видимой картинкой мира. Понятно, что в такого рода системах нередко используются примерно те же технологии, что и в области моделирования виртуальной реальности (VR). Однако есть и существенная разница. Виртуальная реальность как бы ставит перед собой нахальную цель полной подмены картины мира настоящего, а расширенная реальность лишь деликатно и почтительно этот мир дополняет. Пока что полноценная расширенная реальность может казаться чем-то фантастическим, однако в исследовательских лабораториях прототипы подобных систем создаются уже более трёх десятилетий. Сам термин augmented reality родился не так давно, в начале 1990-х годов, у учёных корпорации Boeing, когда здесь создавали экспериментальную AR-систему для помощи рабочим- сборщикам при монтаже хитроумнейших сетей из проводов и кабелей в самолётах. Самым же главным для ощутимого прогресса в AR-исследованиях за последнее десятилетия стало существенное снижение цен на компьютерное оборудование при стремительном одновременном росте его производительности.

ГОЛОВА - ТЕЛЕВИЗОР

По своему определению дисплей сквозного видения в AR-системе должен комбинировать в едином изображении виртуальную и реальную информацию. В принципе, такой дисплей может быть закреплён и стационарно, но обычно его крепят к голове - в виде миниатюрного экрана, расположенного близко к глазу и поэтому способного создавать впечатление картины любого размера. По аналогии с наушниками это устройство можно назвать головным дисплеем, в английском же языке для его обозначения закрепилась аббревиатура HMD, head-mounted display. Устройства HMD подразделяются на два основных типа: оптические и видео. Оптический дисплей сквозного видения в простейшем варианте представляет собой зеркальный светоделитель - полупрозрачное зеркало, одновременно отражающее и пропускающее свет. Если правильно расположить такую пластину, то светоделитель может отражать в глаз пользователя проекционную картинку компьютерного дисплея и одновременно пропускать свет от картины реального окружающего мира. Для более качественного наложения картинок могут использоваться линзы и призмы, однако принцип совмещения изображений в таком устройстве становится очевиден. Что же касается второго типа, т.е. видеодисплеев сквозного видения, здесь применяется технология микширования видео изображений, первоначально создавшаяся для спецэффектов в кино и ТВ. Иными словами происходит комбинирование картинки от закреплённой на голове видеокамеры и изображений, сгенерированных компьютером. В этом случае очки совершенно непрозрачные, поскольку роль линзы играет дисплей, на который проецируется совмещённое изображение. Видеокамеру, как правило, стремятся расположить максимально близко к точке обзора глаза, чтобы получающаяся видео-картинка была как можно ближе естественному зрению. И в первом, и во втором вариантах дисплеи могут монтироваться для обоих глаз, так что возможно формирование объёмного стереоскопического изображения. Как это обычно бывает, каждый из альтернативных подходов к конструкции HMD имеет свои плюсы и минусы. Оптические системы дают пользователю возможность видеть реальный мир с тем прекрасным разрешением и обзором, что представляют глаза. Зато накладываемая графика получается полупрозрачной и не скрывает объекты, которые подменяет. В результате может плохо читаться текст, или трёхмерная графика не всегда способна создать убедительную иллюзию объёма. Кроме того, из-за разницы в дистанциях пользователь может испытывать трудности при попытках одновременной фокусировки на реальном объекте и его наложенной структуре. В видеосистемах сквозного видения, напротив, виртуальные объекты полностью скрывают реальные, а также комбинируются с ними с большим разнообразием с точки зрения графических эффектов. Нет здесь и проблем с фокусировкой, поскольку виртуальные и физические объекты совмещаются в одной плоскости. Однако оборотной стороной всех этих плюсов компьютерного изображения становится заметное снижение качества картинки, поскольку разрешающим способностям видеокамеры и экрана пока что далеко до человеческого глаза. Постоянно совершенствующиеся технологии позволили довести современные микро дисплеи до размеров вполне обычных очков. Отчётливо наметилось и несколько новых направлений. Например, компания MICROVISION не так давно начала выпускать устройство, в котором лазер малой энергии проецирует изображение без всяких экранов на сетчатку глаза. При другом альтернативном подходе генерируемая компьютером графика, напротив, объёмно проецируется непосредственно, на окружающую обстановку. Ясно, что та или иная конкретная конструкция дисплея расширенной реальности будет определяться характером решаемых с его помощью задач, а потому самое время подробнее рассмотреть те области, где применение AR - систем несёт вполне очевидные выгоды.

В ЦЕХУ, В БЫТУ, НА ПОЛЕ БОЯ

Что касается производства, то, термин «расширенная реальность» был придуман в 1990 году учёным корпорации «Боинг» Томом Коделлом, замыслившим «волшебными очками» заменить кучу увесистых папок со схемами, описывающими мудрёную разводку проводов в каждой из моделей самолётов компании. Новаторские идеи Коделла и его коллег не получили тогда полноценного развития, главным образом из-за недостаточно развитой в ту пору компьютерной техники. Но был чётко сформулирован весьма плодотворный общий принцип: с помощью AR всякий техник по ремонту оборудования, разглядывая вышедший из строя сложный агрегат, видит на его фоне инструкции, выделяющие те детали, что подлежат проверке в первую очередь, а также рекомендации по их демонтажу и замене. В настоящее время это концепция начинает воплощаться в самых разных системах - от техобслуживания химкомбинатов до ремонта автомобилей и бытовой техники. Чрезвычайно полезны AR-системы в опасных для жизни профессиях. Например, пожарные могут отчётливо видеть внутреннюю структуру горящего здания, что позволяет им обходить более рискованные участки, не выявляемыми любыми иными средствами. Пилоты современных боевых самолётов, танкисты или военные моряки уже много лет имеют компьютерные системы, выводящие на экран обзорного дисплея полезную дополнительную информацию на основе поступающих аналитических данных о ходе боя. Донести такие же идеи до каждого солдата - задача весьма проблематичная с точки зрения технологий. Но в США, например, ещё в 1994 году была запущена исследовательская программа LAND WARROR, ставящего своей целью создание носимого AR- компьютера в качестве стандартной экипировки пехотинца. Программа эта уже успела пережить кризисный этап, и едва не была свёрнута из-за перерасхода средств. Однако сейчас работа вновь идёт полным ходом. На 2003 г. намечены массовые полевые испытания «солдатского компьютера», а на 2008 - оснащение подобной техникой всех бойцов. Обеспеченные AR- системой солдаты получают возможность действовать на любой незнакомой территории, где заранее проведены тщательное картографирование и разведка. Например, видеть позиции вражеских снайперов, выявленные накануне беспилотными самолётами - шпионами. Видеть не просто здание, а объект с надписью «склад боеприпасов». Не просто дорогу, а участки с надписью «заминировано». Практически те же самые принципы оказания помощи при ориентации в неизвестной местности развиваются и совсем в иных, куда более мирных областях - прежде всего, в туристическом бизнесе. Путешественники, оснащённые мобильной AR - системой, получат возможность не только свободно ориентироваться в чужом городе, но, и окинув взглядом улицу, увидеть, к примеру, на дисплее очков список и местоположение всех ресторанов в квартале, а также комментарии о ценах, особенностях кухни и самых ударных блюдах в сегодняшнем меню. Главное здесь, чтобы сами владельцы этих заведений позаботились о своевременном обновлении соответствующей информации в интернете. Интересные приложения AR - систем разрабатываются для музеев. Например, немецкими учёными из Фраунгоферовского института PC - графики разработано устройство, позволяющее посетителям увидеть древний экспонат не только в сильно попорченном веками нынешнем состоянии, но и (надев специальные очки) полюбоваться вещью во всей её первозданной красе. Естественно это будет реконструкция, воспроизведённая археологами и историками искусства, однако на силе эстетических впечатлений подобная трансформация может сказываться самым удивительным образом. В бизнесе AR - системы могут оказать неоценимую помощь и при таких мероприятиях, как, скажем, многолюдные презентации. Сотрудники, занимающиеся связью с общественностью, получат ценнейший инструмент - чудо очки, высвечивающие на микро дисплей всю нужную информацию о каждом участнике: имя, компания, должность и т.д. и т.п. Тут же, конечно, начинают всплывать и неприятные всевозможные стороны технологии, связанные с покушением на приватность граждан. Ведь далеко не каждому понравится, что фактически «первый встречный», окинув тебя взглядом, может тут же порыться во всех сведениях, что найдутся на твою персону в базах данных. Более того, богатые до фантазий головы уже видят AR - системы, позволяющие, к примеру, владельцу очков виртуально раздеть всякого заинтересовавшего человека.… Впрочем, всякая новая технология несёт в себе потенциал двоякого применения, и дело тут, скорее, в уровне развития человека, а не в угрозах продвинутой техники.

ЭЛЕКТРОННАЯ ПАНАЦЕЯ

В США сделан очередной, на первый взгляд небольшой, но по-своему знаменательный шаг к постепенному превращению человека в киборга. Консультативный совет государственного управления FDA, надзирающего за качеством медикаментов и пищевых продуктов, рекомендовал властям одобрить применение электронных устройств-имплантатов для лечения депрессии. Строго говоря, лечить это психическое расстройство, от которого страдают, по меньшей мере 19 млн. взрослых американцев, современная медицина не умеет. Врачам удается лишь на какое-то время облегчать состояние больного, обычно с помощью медикаментов-антидепрессантов вроде прозака и паксила. Кроме того, примерно на 20% пациентов “химия” не действует. Электронные устройства-антидепрессанты вживляются в организм человека и подавляют депрессию с помощью электростимуляции особого нерва, идущего в мозг (методика называется vagus nerve stimulation, VNS). Внешне и функционально прибор напоминает кардиостимулятор, давно взятый медиками на вооружение, только здесь импульсы подаются не на седце, а на так называемый блуждающий черепномозговой нерв. Лет двадцать назад ученые обнаружили, что VNS может останавливать эпилептические припадки. Имплантаты-нейростимуляторы для больных эпилепсией начали применять с 1988 года, а на сегодняшний день их используют больше 25 тысяч человек. Но наряду с сокращением числа припадков врачи отметили и побочный эффект нейростимуляций -- явное улучшение настроения больных. При углубленном изучении VNS было установлено, что электропульсации изменяют характер кровообращения в определенных зонах мозга -- причем с такой же примерно картиной, как при действии лекарств-антидепрессантов. Пока врачи очень смутно представляют, каким образом стимуляция VNS избавляет от депрессии. Но то же самое справедливо и для прозака и прочих средств, широко использующихся при лечении психических заболеваний. Электронный нейростимулятор выпускает американская фирма Cyberonics (Хьюстон), и к настоящему времени прибор уже одобрен Европейским Союзом и Канадой. Поскольку американское управление FDA, как правило, следует рекомендациям своего консультативного совета, можно считать, что и в США применение нейростимуляторов-имплантатов -- дело фактически решенное. Учитывая, что технологию VNS пытаются сейчас использовать для лечения не только депрессий, но и неврозов, фобий, болезни Альцгеймера, булимии и мигрени, то вполне возможно, что в недалеком будущем имплантанты-нейростимуляторы станут обычной вещью.

Данные опыты применения кибертехнологий не единственный пример «киборгизации» человека, например: так Японцы в этом году планируют вживить аппарат для наблюдения инфракрасного и ультрафиолетового излучения. А в Англии вживлена микросхема для управления компьютером.

В настоящее время уже синтезированы вещества, позволяющие ткани нерва обрастать контакт микросхемы.

Немецким ученым удалось соединить ряд живых нервных клеток с элементами кремниевого чипа. Таким образом, они создали первую в мире сложную схему, сочетающую живые и неживые компоненты.

Двое исследователей Института биохимии Макса Планка посредством микроперегородок из полимида сумели зафиксировать около 20 нейронов улитки на кремниевом чипе. Между собой нейроны парами соединили через синапсы. Пары были соединены с полевыми транзисторами чипа, образуя схемы кремний-нейрон-нейрон-кремний. Входной электрический импульс стимулирует первый нейрон, далее через синапс сигнал проходит во второй, постсинаптическое возбуждение которого модулирует ток транзистора, образуя выходной сигнал компонента из двух транзисторов и двух нейронов.

Улитка Lymnaea stagnalis издавна была главным подопытным существом нейрофизиологов из-за больших размеров своих нервных клеток, доступных для манипуляций обычными инструментами.

 Данный эксперимент имеет большое значение для определения принципиальной возможности функционирования подобных систем. Нейроэлектроника долго подбиралась к этому достижению.

В будущем гибридные схемы из комбинаций живых и неживых элементов позволят осуществить прорыв в медицине, заменяя поврежденные естественные биомеханизмы человека на искусственные имплантанты, управляемые нервной системой.

Многим людям можно будет вернуть утраченные или изначально отсутствующие функции: зрение, слух, подвижность. Эти функции даже можно будет заметно усилить по сравнению с обычными. Возможно, кому-то не помешают дополнительные умственные способности или, скажем, память (вспомним фильм "Джони-мнемоник").

С другой стороны, гибридные элементы сделают реальностью киборгов - роботов, приближающихся по своим способностям к человеку. Пока сделан небольшой, но принципиальный шаг навстречу технологиям будущего.

Сейчас немецкие ученые уже работают над созданием схемы из 15 тысяч транзисторно-нейронных элементов. Для создания больших схем необходимо научиться более точно сопрягать синапсы нейрона с транзисторами", - отметил биофизик Петер Фромгерц, который разработал данную технологию совместно со своим коллегой Гюнтером Зеком.

А Российским ученым удалось создать первую в мире интеллектуальную машину, способную выполнять функции человеческого мозга. В основе искусственного интеллекта, названного брейнпьютером, лежит модель клетки головного мозга человека. Идея создания искусственного "мозга" принадлежит российскому ученому - академику международной академии информатизации Виталию Вальцелю

БИОЭЛЕКТРИЧЕСКАЯ РУКА

Ещё в 1956 году советскими учеными в Центральном научно-исследовательском институте протезирования и протезостроения Министерства социального обеспечения РСФСР был создан макетный образец "биоэлектрической руки" ---- протеза, управляемого с помощью биотоков мышц культи. Это "чудо ХХ века", впервые демонстрировалось в советском павильоне на Всемирной выставке в Брюсселе.

Обладатель искусственной руки пользуется ей очень просто, без каких-либо неестественных усилий: мозг отдает мышцам приказание сократиться, после чего легкое сокращение одной мышц культи заставляет кисть сжаться, сокращение другой ---- раскрывает ее. Протез надежно работает при любом положении руки, с его помощью человек может самостоятельно обслуживать себя: одеться, обуться, за обеденным столом управляться с ножом и вилкой по всем правилам хорошего тона, а также писать, чертить и т.п. Более того уверенно работать напильником и ножовкой, пинцетом и ножницами и даже управлять транспортным средством.

Значительно позже компания Shadow представила публике интересный прототип. Правая рука компании Shadow (ПРТ) - это продвинутый робот в виде человеческой руки, который максимально точно воспроизводит движение настоящей руки по всем 25 степеням свободы. Силовые характеристики и точность движений робота также соответствуют человеческой руке. Все характерные размеры робота были измерены у членов исследовательской группы.

ПРТ - это самостоятельная система. В области предплечья находятся мышцы и клапанная коробка. ПРТ включает все необходимые системы управления (программное обеспечение удовлетворяет лицензии GNU GPL) и документацию, достаточную для обучения и исследования. Основные размеры руки были сделаны такими, чтобы как можно более точно соответствовать средней человеческой руке. Длина предплечья сравнима с длиной человеческой руки, хотя у основания она расширяется до 140 мм. Рука, сенсоры, мускулы и клапанная коробка вместе весят 3,5 кг. Центр масс системы находится примерно в 160 мм от основания.

Длина пальца от кончика пальца до середины первого сустава

98 мм

Длина большого пальца

105 мм

Длина ладони от середины первого сустава пальцев до оси запястья

90 мм

Ширина ладони

85 мм

Толщина ладони

24 мм

Предплечье от основания до оси запястья

450 мм

Существуют незначительные отличия в скорости движения механической руки от настоящей. Различные методы управления движением приводят к разной максимальной скорости, тем не менее, в среднем движения примерно в два раза медленнее, чем у человеческой руки. Например, чтобы разжать кулак и полностью распрямиться механической руке требуется примерно 1,2 с.

Вся система - это комбинация металла и пластика.

· Кость предплечья: Сталь

· Ладонь: ацетил, алюминий и плоть из полиуретановая.

· Пальцы: Ацетил, алюминий, поликарбонатные ногти и плоть из полиуретана.

· Основание: Ацетил, резина, латунь

Система достаточно эластичная, и, поэтому, приведены только приблизительные данные действующих моментов сил. Тем не менее, как видно на рисунке 1 на странице 2, рука способна удерживать себя на весу.

· Запястье: 1,5 Н•м.

· Периферические суставы: 0,5 Н•м (пальцы, в том числе большой)

· Ближайшие суставы: 1,0 Н•м (пальцы, в том числе большой)

В ПРТ используется пневматическая система мышц, таким образом ей требуется как источник электропитания, так и компрессор для сжатия воздуха.

· CAN - шина: 1А@ 8 В.

· Мускулы: не больше 2А@ 28 В

· Сжатый воздух (фильтрованный, безмасляный) @ 3,5 бар. (Потребление: у каждого мускула объем примерно 0,01 литра, всей руке требуется не больше 18 литров в минуту).

Рука управляется 36 пневматическими мускулами, расположенными на предплечье. Такая конструкция обеспечивает гладкость движений. Как и у нормальной, веками эволюционировавшей, человеческой руки, мускулы прикрепляются сухожилиями к суставам. Пневматические клапаны каждого мускула и давление в них, определяемое с помощью соответствующих датчиков контролируются встроенной в основании руки электроникой. Используются три режима работы приводов руки. Противостоящая пара мускулов управляет движением большинства суставов и обеспечивает гладкость движения. Отдельный мускул с возвращающей пружиной управляет сжиманием и разжиманием пальцев. Средняя и концевая фаланги управляются совмещенным приводом, что имитирует поведение человеческих пальцев.

Система руки представляет собой шину локальной сети контроллеров для взаимодействия с внешним миром. Все данные сенсоров, рабочие точки и установленные параметры контроллеров доступны по этой шине. Для связи используется простой протокол. (Более подробная информация содержится в руководстве по эксплуатации системы.)Между отдельными компонентами связь осуществляется по протоколу последовательного периферийного интерфейса

Протокол шины CAN позволяет осуществлять следующие операции для настройки системы:

· отключить и включить компоненты робота,

· установить скорость передачи данных сенсором,

· отключить и включить отдельные PID контроллеры управления клапанами,

· изменить датчик и управляемый элемент PID контроллера, а также его значения усиления,

· изменить используемые компонентами адреса в CAN

· установить состояние компонентов в начальное.

Система из патентованных датчиков, работающих на эффекте Холла с разрешением 0,2 градуса определяет угол поворота каждого сустава. Эти данные измеряются локальными аналого-цифровыми преобразователями с разрешением 1 бит и передаются на шину CAN. Скорость оцифровки - около 180 Гц.

Данные четырех сенсоров совмещаются в сообщение для CAN:

ID сообщения

Байт 0

1

2

3

4

5

6

7

База узла +N

L0

H0

L1

h2

L2

h3

L3

H3

 

Датчик N = H0•256+L0

Датчик N+1 = h2•256+L1

Датчик N+2 = h3•256+L2

Датчик N+3 = H3•256+L3

Данные датчиков давления выровнены по правому краю, и поэтому не нормированные значения изменяются от 0 до 4095.

Схема двигательных элементов руки

Сустав

Связывает

Угол поворота

Мускул

Указательный, средний, безымянный пальцы

1

дальнюю-среднюю

0 - +90

связанная пара

2

среднюю-ближнюю

0 - +90

3

ближнюю-костяшка

-15 - +90

пара

4

костяшка-ладонь

-15 - +15

отдельный с пружиной

Мизинец

1

дальнюю-среднюю

0 - +90

связанная пара

2

среднюю-ближнюю

0 - +90

3

ближнюю-костяшка

-15 - +90

пара

4

костяшка-пястная кость

-15 - +15

отдельный с пружиной

5

пястная кость- ладонь

-5 - +45

пара

Большой палец

1

дальнюю-среднюю

0 - +90

пара

2

среднюю-ближнюю

0 - +90

пара

3

ближнюю-костяшка

-15 - +90

пара

4

костяшка-пястная кость

-15 - +15

пара

5

пястная кость- ладонь

-5 - +45

пара

Запястье

1

ладонь-запястье

-80 - +60

пара

2

запястье-предплечье

-10 - +45

пара

У большого пальца 5 степеней свободы и 5 суставов У остальных пальцев по 3 степени свободы и по 4 сустава. Движение двух дальних фаланг пальцев не независимы, как и у человека: угол сгиба сустава средней фаланги всегда не меньше чем угол сгиба сустава дальней фаланги. Таким образом, средняя фаланга может гнуться, в то время как дальняя фаланга остается прямой. У мизинца есть дополнительный подвижный сустав, которым он крепится к ладони.

ЭЛЕКТРОННЫЕ ГЛАЗА

Световые волны (вместо сетчатки). Стеклянные глаза, содержащие матрицы светочувствительных элементов, соединяются с сохранившимися мышцами зрительных органов слепого. Благодаря усилию глазных мускулов положение этих экранов (камер) можно менять, направляя их на тот или иной объект. В дужках темных фальшивых очков, заменяющих оптический нерв, размещены микроузлы, преобразующие изображение, "считываемое" с экрана, которое передается в электронный блок, связанный с электродами, кончики которых введены в участки гловного мозга, ведающие зрением. Соединение электронных схем с вживленными электродами производится либо по проводам с подкожным разъемом, либо через передатчик, устанавливаемый снаружи и имеющий индуктивную связь со вживленной частью системы под черепной коробкой. 

Каждый раз, когда экран в глазнице слепого регистрирует какой-либо несложный объект, миниатюрная ЭВМ в дужке очков преобразует изображение в импульсы. В свою очередь электроды "переводят" их в иллюзорное ощущение света, соответствующее определенному пространственному образу. Предстоит еще много сделать, чтобы подобные системы искусственного зрения стали высокоэффективными приборами, приносящими реальную пользу не отдельным пациентам, а тысячам и тысячам слепых.

Интересно, что глаз воспринимает единый визуальный ряд очень фрагментарно, создавая целый набор различных зрительных репрезентаций, которые затем параллельно - в форме отдельных нервных импульсов - транслируются в нервные центры мозга.

Выяснилось, что визуальный образ формируется мозгом на основе двенадцати отдельных грубых «набросков», в которых отражены определенные элементы внешнего мира. Формирование этих образов обусловлено структурно, - строгая специализация ганглиев находит непосредственное отражение в строении сетчатки. Она состоит из нескольких слоев. Зрительную информацию воспринимают светочувствительные фоторецепторы (палочки и колбочки). Они передают импульсы слою горизонтальных и биполярных клеток, которые связаны с ганглиями многочисленными нервными отростками. На этом этапе и фильтруется информация.

Все ганглии делятся на 12 групп, и каждая из них снимает свое «кино», фиксирует свою часть картинки - это может быть движение, или большие структурно однообразные объекты, или границы объектов, и т. п. Затем мозг складывает эти куски окружающей реальности воедино и, вероятно, дополняет их образами, хранящимися в памяти. На основе полученных данных была построена компьютерная модель, симулирующая активность ганглиев и наглядно демонстрирующая, какие именно изображения передаются в мозг.

ИСКУССТВЕННОЕ СЕРДЦЕ

Конструкция первого механического сердца была разработана еще в конце 1930-х гг. русским хирургом Владимиром Демиховым. Устройство это представляло собой насос, приводящийся в действие электромотором. Эксперименты показали перспективность идеи как таковой: собакам, у которых функции удаленного сердца выполнял его рукотворный аналог, удавалось прожить до двух с половиной часов. Спустя 30 лет после этих опытов была проведена первая подобная операция на человеке. Цель ее была сравнительно скромной - дать пациенту возможность протянуть несколько дней в ожидании донорского сердца. В начале 1980-х гг. было создано устройство, рассчитанное на длительный период работы. Искусственное сердце, которое получило название Jarvik-7, предназначалось также и для больных, которые никогда не дождутся своего донора. Ситуация обычная, поскольку органов, пригодных для трансплантации, никогда не было в избытке. Первый из пациентов, подключенных к Jarvik-7, прожил 112 дней, еще один - 620 дней.

Впрочем, жизнь их была малоприятной. Работа механического сердца вызывала конвульсии, затрудненное дыхание, нарушения работы внутренних органов, помутнение сознания. Больные были буквально прикованы к внешнему блоку питания и управления размером со стиральную машину. Наконец, чтобы этот блок соединить проводами с имплантированным в грудь насосом, приходилось проделывать дыры в теле пациентов. Риск занести инфекцию, как нетрудно догадаться, в таких условиях огромен. Словом, несовершенство первых искусственных аналогов сердца было настолько очевидно, что в одной из статей в "Нью-Йорк Таймс" эти исследования обозвали "Дракулой медицинских технологий".

Однако в последнее время появляется все больше оснований изменить скептическое отношение к попыткам сконструировать эффективно работающие устройства, способные с успехом заменить сердце. Созданы надежные миниатюрные двигатели, микропроцессоры дают уникальную возможность регулировать поток крови в зависимости от физической нагрузки, а легкие и емкие литиевые батареи могут обеспечить необходимую энергию. Все эти технологические достижения воплощены в конструкции портативного искусственного сердца, созданного специалистами американской компании Abiomed Inc. Устройство, получившее название AbioCor, представляет собой механический насос с внутренними клапанами и четырьмя трубками, которые соединяются с сосудами. Вся конструкция в точности симулирует работу настоящего человеческого сердца. Питается этот титаново-пластмассовый агрегат от батареи весом менее двух килограммов - ее предполагается повесить пациенту на пояс. Причем никакие провода из груди торчать не будут, поскольку энергия передается прямо через кожу. В этом отношении у AbioCor просто нет аналогов. Внешний блок питания транслирует радиосигнал, который преобразуется в электрические импульсы детектором, имплантированным в брюшную полость. Батарея требует подзарядки каждые четыре часа, и на время ее замены подключается внутренний блок питания, рассчитанный на 30 минут автономной работы. Кроме всего прочего, система оснащена миниатюрным передатчиком, позволяющим дистанционно отслеживать параметры работы всего устройства.

Специалисты из Abiomed потратили на свою разработку 30 лет, но и сегодня они говорят, что удалось сконструировать лишь экспериментальную модель. Цель дальнейших исследований - создать искусственное сердце, способное работать до пяти лет.

МОЗГ

Медики Университета Эмори (штат Джорджия, США) вводят добровольцам мозговые имплантаты - крошечные микросхемы величиной меньше спичечной головки. С их помощью и при содействии компьютера силой мысли можно пока лишь включать свет, электроприборы и подключаться к Интернету. А в нейрохирургическом центре в Кливленде уже создали первый искусственный отдел мозга. Этот силиконовый чип - аналог гиппокамп, контролирующего сознание. Данный чип был построен на базе модели человеческой нервной системы, в основе которой лежит теория нейронных сетей.

Как отражается ощущение, восприятие, представление в нейронах.

Для понимания этого обратимся к повседневной жизни. Рассмотрим ситуацию лечения зубов в стоматологическом кабинете. Предположим у пациента пульпит. Что бы он не чувствовал боли ему делают местную анестезию (при помощи новокаина или чего то еще). Что происходит? Человек перестает ощущать боль, чувствительные нейроны реагирующие на боль, заблокированы. Можно сделать вывод, ощущение - это возбуждение чувствительных нейронов. Другой пример: человек болен с рождения аносмией - отсутствие обоняния, такому человеку, как бы мы не хотели, не объяснить, что такое запах апельсина или цветов. Для человека без патологий, к примеру, сладкое - это возбужденная группа рецепторов реагирующих на сладкое. То же самое и с другими явлениями, синий цвет - это возбужденная некоторая группа чувствительных нейронов возбуждаемых на синий цвет, зуд - это возбужденные рецепторы кожи. Рассмотрим теперь, что такое восприятие. Пусть это будет, восприятие снега человеком. Выделим его основные признаки: холодный, белый. Дадим его человеку. Что произойдет? У человека возбудятся чувствительные нейроны, реагирующие на холодное и на белый цвет. Так возникло восприятие снега, заключенное в двух группах нейронов. Получается, что живое существо, в частности человек - это набор множества групп нейронов, где каждая группа реагируют на определенный раздражитель, и несет своеобразное чувство. Речь, боль, зрение, обоняние, слух - это все возбуждение какой-то определенной группы нейронов. Теперь рассмотрим что такое представление. Возьмем тот же пример со снегом. Для нашего человека представление о снеге - это возбужденные группы чувствительных нейронов реагирующих на холодное и белое при его отсутствии. Как это реализуется при помощи нейронов, будет указано ниже, после описания соединения нейронов. Почему в нейронах эти чувства, пока не ясно, но описание множества болезней (Аносмия, Ахроматопсия и др.), да и многое другое указывает на то, что это так. К этому нужно относиться так же, как мы относимся к электричеству, к магнетизму, к атомам, как к основе мира. Это какая-то неизвестная материя или что-то еще. Скорее всего, чувства можно объединить в таблицу, похожую на таблицу Менделеева.

СОЕДИНЕНИЕ НЕЙРОНОВ

Разберемся, как группы нейронов в процессе жизнедеятельности соединятся друг с другом. Для этого обратимся к школьному курсу биологии и вспомним опыт Павлова с собакой. Как Павлов вырабатывал рефлексы? Перед кормлением звучал звонок, а после давалась еда. Когда звучал звонок, а пищу не давали, то у собаки наблюдалось повышенное слюноотделение. У нее включились в обработку нейроны, отвечающие за переработку пищи, хотя пищи не было. Был выработан рефлекс. Значит, как-то нейроны, реагирующие на звук, стали возбуждать нейроны, отвечающие за пищеварение. Здесь первое, что приходит в голову, аксоны и дендриты этих нейронов соединились. Отсюда можно предположить нейроны после своего возбуждения соединяются друг с другом. И не надо вычислять веса этих связей, как-то соединились ну и хорошо. Что с чем соединилось аксон с дендритом, дендрит с дендритом не важно, главное соединение (рис.1).

Рис.1

И нельзя не согласиться с Павловым, что мышление человека это рефлексы. Просто к этому нужно добавить чувства. Рассмотрим этот опыт со стороны науки логики. Что для собаки Павлова еда? Это возбуждение групп нейронов: вкусовых рецепторов, некоторых групп рецепторов зрения и запаха, нейронов реагирующих на звук звонка. Что следует после того, как не дали еду специально обученной этому собаке? Группы нейронов реагирующих на звук начинают возбуждать группы нейронов вкуса, зрения и всех других групп, которые с ней связаны. Вот оно и представление! У собаки возбудились группы нейронов реагирующих на пищу, при ее отсутствии.

ЛЕСТНИЦА ПРИОРИТЕТОВ. ВЗАИМНОЕ ТОРМОЖЕНИЕ ГРУПП НЕЙРОНОВ

Попробуем создать простейший искусственный интеллект. Для этого создадим простейшего жука. Вначале определим, на что в окружающем мире должен обращать внимание наш жучок, для того, что бы выжить. Самое главное, конечно же, самосохранение, поэтому блок нейронов боли должен обладать наивысшим приоритетом (Приоритет-1). При его возбуждении должны блокироваться все остальные блоки. Следующим, конечно потребность в питании (Приоритет-2). Что бы жучок радовался жизни, добавим ему блок удовольствия (Приоритет-3), в реальных организмах это могут быть нейроны реагирующие на сладкое. Еще дадим ему чувство обоняния, пусть он может различать два запаха (Приоритет-4). Пусть он видит, различает три цвета зеленый, красный, синий (Приоритет-5). Для простейшей модели этого достаточно. Теперь объединим все эти блоки нейронов в схему и назовем ее лестница приоритетов (рис.2).

Рис.2

Линии между блоками - это тормозящие связи между блоками нейронов. Блок Запах-1 блокирует блок Запах-2, на схеме они объединены воедино для наглядности. Из рис. 2 видно, что при одновременном возбуждении блока Запах-1 и Боли, блок Боли заблокирует блок Запах-1. Также и с другими блоками. Для нормальной работы схемы тормозные нейромедиаторы должны обладать следующими свойствами: очень быстро распадаться и при активации какого-либо блока они должны постоянно выделяться. Иначе схема будет в стопоре, она не заработает, пока тормозные нейромедиаторы не распадутся. Забегая вперед, следует сказать, что почти все возбуждающие нейромедиаторы должны обладать противоположными свойствами: выделяться порциями, медленно распадаться до возбуждения и быстро распадаться после возбуждения, но нужны и нейромедиаторы обладающими такими же свойствами как тормозные нейромедиаторы. В этой схеме есть недостаток. При слабой боли и сильном Запахе-1 будет возбужден блок Боли, что мало приемлемо для выживания организма. Поэтому эту схему необходимо дополнить. Более сложная и подробная схема лестницы приоритетов с обратной блокировкой, показана на рис. 3, для легкости восприятия она состоит из трех чувствительных блоков. Большее количество блоков соединяется по этому же принципу.

Рис.3

Для работы схемы важно подобрать порог возбуждения блоков нейронов. Блоки торможения БТ1, БТ2, БТ4 должны иметь высокий порог возбуждения. Они должны активироваться, только если большое количество соответствующих им рецепторов активировано. Блоки БТ3, БТ5, должны всегда активироваться, когда активировался их чувствительный блок (должен быть низкий порог возбуждения). Рассмотрим основные варианты, которые могут возникнуть при работе схемы.

· Все рецепторы сильно возбуждены. Возбуждаются: блок Боли, БТ1, БТ2. Блок БТ1 заблокирует блок БТ2 и попытается заблокировать блок Боли. Но так как рецепторы сильно возбуждены, то тормозящих связей блока БТ1 не хватит для блокировки блока Боли. В результате будет активирован блок Боли.

· Рецепторы 2 и рецепторы 3 сильно возбуждены, а рецепторы 1 слабо. Блок БТ1 заблокирует БТ2 и блок Боли. Активируется блок Потребности в пищи.

· Рецепторы 3 сильно возбуждены, а рецепторы 1 и рецепторы 2 слабо. Блок БТ2 заблокирует блок Боли и блок Потребности пищи. Активируется блок Удовольствия.

Есть еще варианты, но в любом случае всегда будет возбужден блок, у которого рецепторы возбуждены сильнее, а при сильном возбуждении нескольких групп рецепторов будет возбужден чувствительный блок, приоритет которого выше.

Полная схема простейшего искусственного интеллекта и описание его мышления.

Наделим нашего жука блоком Хватания пищи (аналогия рта человека, но сильно упрощенный), Желудком, где будет находиться пища и откуда будут идти сигналы в блок Потребности пищи и блокам Движения, пусть это будет жгутик, как у амебы. Блок Удовольствия расположим во рту, пусть это будут вкусовые рецепторы. Изобразим все это на схеме представленной, на рис. 4.

Рис.4

Эта схема новорожденного жука. В ней уже установлены некоторые соединения между блоками. Красные линии указывают возбуждающее соединение между нейронами, а черные линии тормозящее. Опишем безусловные рефлексы, которыми обладает наш жучок при рождении. Если желудок пуст, то начинает двигаться жгутик (возбуждается блок нейронов движения), жучок начинает искать пищу. Блок Движений не наделен чувствительными нейронами, хотя в более сложных моделях на нем можно расположить нейроны боли, а то жук не почувствует воздействия на жгутик и останется инвалидом. Если желудок полный, то блок Движения блокируется, зачем бессмысленно тратить силы. При возбуждении блока Боли, активизируется блок Движения, жучок должен избегать боли, его главная задача жить. На блоке Хватания пищи расположим нейроны боли и удовольствия. При попадании в этот блок невкусной пищи будет возбуждаться блок Движения и жучок будет пытаться уйти от невкусного. ...........



Страницы: [1] | 2 |








 
 
Показывать только:




Портфель:
Выбранных работ  


Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Перспективы создания киборгов | курсовая работа

СтудентБанк.ру © 2014 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег