Главная   Добавить в избранное Активность основных карбокмипептидаз в тканях пренатально алкоголизированных крыс | диссертация


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней

 



Активность основных карбокмипептидаз в тканях пренатально алкоголизированных крыс - диссертация


Категория: Диссертации
Рубрика: Биология и естествознание
Размер файла: 237 Kb
Количество загрузок:
40
Количество просмотров:
3652
Описание работы: диссертация на тему Активность основных карбокмипептидаз в тканях пренатально алкоголизированных крыс
Подробнее о работе: Читать или Скачать
Смотреть
Скачать


50, 52], введение гормонов [39] и транквилизаторов [187, 341], предрасположенности к потреблению этанола [54], в развитие физической зависимости от него [17, 44, 53].

Имеются также данные о половых отличиях в активности КПН [101]. Половые гормоны влияют на активность КПН в отделах гипоталамо-гипофизарно-надпочечниково-гонадной системы мышей: активность фермента у контрольных животных у самок выше, чем у самцов; экзогенно вводимые тестостерон и прогестерон по-разному снижают активность КПН в тканях животных разного пола [88].

Вовлечение КПН в формирование алкогольной зависимости [17, 32, 44, 45, 53, 54, 341], его участие в процессинге многих биологически активных пептидов [35, 48, 56, 131, 136, 151, 160, 172, 174, 200, 204, 292] обусловливают интерес к исследованию активности данного фермента и его участия в формировании толерантности к этанолу и предрасположенности к алкоголизму в постнатальном периоде у животных, испытавших пренатальное воздействие этанола.

1.3.3. ФМСФ-ингибируемая карбоксипептидаза

Первые упоминания о существовании фермента, отщепляющего аргинин и лизин с С-конца пептидов, но в то же время отличающегося от всех известных металлокарбоксипептидаз, относятся к 1993 году. Более подробные сведения появились в 1995 году [40, 41].

Фенилметилсульфонилфторид-ингибируемая карбоксипептидаза (ФМСФ-КП) - экзопептидаза, отщепляющая остатки основных аминокислот с С-конца пептидов. В частности, она отщепляет остаток аргинина от дансил-Phe-Leu-Arg [40], Cbz-Gly-Gly-Arg, Met5-энкефалина-Arg6 [47] с образованием, соответственно, дансил-Phe-Leu, Cbz-Gly-Gly, Met5-энкефалина. Дальнейшего расщепления образовавшихся продуктов не происходит. Фермент имеет Mr 100000 - 110000 и проявляет максимальную активность при pH 5,0-6,0 [40]. Фенилметилсульфонилфторид и п-хлоромеркурбензоат полностью ингибируют его. Иодоацетамид снижается карбоксипептидазную активность только на 40%. Другой реагент на SH-группы (N-этилмалеимид), хелатирующий агент ЭДТА и специфический ингибитор КПН ГЭМЯК, а также ионы Co2+ не оказывают влияния на активность фермента. ФМСФ-КП инактивируется при нейтральных и слабощелочных значениях pH, но стабилизируется NaCl [40]. Km для синтетических субстратов дансил-Phe-Leu-Arg и дансил-Phe-Ala-Arg равна 48 и 96 мМ, соответственно.

ФМСФ-КП по своим физико-химическим свойствам схожа с лизосомальной карбоксипептидазой А (лизосомальная КПА, катепсин А, КФ 3. 4. 16. 1), но отличается от нее субстратной специфичностью и распределением активности в тканях и отделах мозга [127, 147, 195, 256, 257, 262, 289].

Тканевое и региональное распределение ФМСФ-КП имеет некоторые видовые отличия [38, 42, 43, 101, 102], но наибольшая активность у всех исследованных видов животных (ежа европейского, кошки, крысы, мыши) отмечена в надпочечниках и гипофизе [38, 42, 43, 88, 101, 102]. В отделах головного мозга активность ФМСФ-КП ниже, чем в периферических тканях и еще ниже, чем в гипофизе [38, 42, 43, 88]. Предполагается, что разных тканях ФМСФ-ингибируемая КП может быть представлена разными изоферментами. Поэтому выявленные отличия могут быть обусловлены разными соотношениями изоферментов у животных разных видов [43]. В мозге наибольшая активность фермента отмечается в отделах с преобладанием серого вещества (обонятельных луковицах, больших полушариях) или с высоким содержанием нейропептидов (гипоталамусе, стриатуме).


Обнаружены половые различия в активности ФМСФ-КП [41, 101, 102]. У самок активность фермента во многих тканях выше, чем у самцов [88]. Активность фермента изменяется в период полового созревания. Экзогенные тестостерон и прогестерон вызывают снижение активности ФМСФ-КП [88]. Наиболее существенное изменение активности ФМСФ-КП при введении тестостерона и прогестерона выявлено в гипофизе и половых железах у животных обоего пола. Минимальное влияние половых стероидных гормонов на активность ферментов обнаружено в гипоталамусе.

Имеющиеся данные позволяют сделать предположение о возможном участии ФМСФ-КП в процессинге, а по некоторым данным и в катаболизме [101], предшественников ряда нейропептидов [41, 43, 47, 101, 102].

Для уточнения биологической роли ФМСФ-КП в норме и при патологии интересно исследовать ее активность у пренатальной алкоголизированных животных обоего пола.

1.4. Регуляторные пептиды и ферменты их обмена в онтогенезе

Содержание биологически активных пептидов изменяется в процессе индивидуального развития организма. Эти возрастные изменения отличаются в разных органах, тканях и группах клеток. Причем наблюдается отличие онтогенетической динамики изменения уровней разных пептидов в одной ткани и одного и того же пептида в разных тканях. Несомненно, это связано с различной биологической ролью разных пептидов в пределах одной ткани и вовлечением одного и того же пептида в протекание разных процессов в разных тканях [52, 55, 76]. В онтогенезе существенно изменяются соотношения между уровнем биологически активных пептидов и их предшественников [266], или соотношение между уровнем пептидов, происходящих из одного предшественника [181, 310], что свидетельствует об изменении специфичности процессинга предшественников в ходе индивидуального развития.

мРНК препроэнкефалина в мозге крыс обнаруживается на Е15, сохраняется на этом уровне до Р14, а затем возрастает до уровня взрослых животных [351]. Продукты расщепления проэнкефалина обнаруживаются на ранних стадиях эмбрионального развития в мозге крыс [342]. Met-энкефалин появляется в мозге крыс на Р0, его уровень увеличивается к Р21 и далее медленно возрастает [347]. По другим данным [25, 267], его уровень повышается в гипофизе, снижается в коре головного мозга, гипоталамусе и спинном мозге, не изменяется в гиппокампе и стволе мозга. Leu-энкефалин появляется в гиппокампе крыс на Р4, его содержание увеличивается к Р18, в среднем мозге не изменяется [118].

В надпочечниках крыс в возрасте Р7-Р21 изменяется соотношение предшественник/зрелая форма Met-энкефалина, очевидно за счет изменения процессинга проформы. Это подтверждается и повышением активности КПН, которая вовлекается в его превращение [266]. При этом содержание Met-энкефалина-Arg6-Phe7 снижается в 4 раза, а Met -энкефалина - в 2 раза [266].

Содержание в-эндорфина в отделах мозга (гиппокампе, гипоталамусе, коре), как правило с возрастом снижается, а в гипофизе - увеличивается [25, 267]. Предполагают, что эти изменения связаны с возрастными особенностями формирования гипоталамо-гипофизарной системы.

У детей, подростков и взрослых обоих полов концентрация АКГТ в плазме крови практически одинакова, а концентация в-липотропина и в-эндорфина возрастает в препубертатном периоде и к началу полового созревания достигает величин, характерных для взрослых [181]. Т. к. эти пептиды происходят из единого предшественника - проопиомеланокортина [247], то избирательное изменение их концентрации может происходить только за счет изменения специфичности процессинга или изменения скорости деградации.

Пролактин обнаруживается в передней доле гипофиза крыс с Е17, его уровень не изменяется до Е21, резко увеличивается с Р1 до Р10. В сыворотке крови концентрация пролактина растет с Е17 до Е21 и снижается с Р1 до Р10 [275].

ВИП обнаруживается в мозге крыс на Е17, уровень его достигает минимума к Р20, а затем медленно повышается [254]. В заднем мозге крыс ВИП обнаруживается на Р4, его концентрация достигает максимума к Р18 [119, 159]. Его уровень в слюнных железах, как и вещества Р, волнообразно увеличивается в первые 8 недель развития крыс [158].

Нейропептид Y появляется в коре и подкорковых ядрах крыс на Е19, его уровень увеличивается к Р0 и далее не изменяется [162, 349]. В тазовом сплетении спинного мозга крыс этот пептид обнаруживается на Е18 [328].

Уровень нейротензина в гипоталамусе крыс возрастает от Р0 до Р19 [307].

Возрастные изменения уровня нейропептидов сильно зависят от пола животных, особенно в период полового созревания. Это связано с тем, что многие биологически активные пептиды вовлекаются в регуляцию уровня половых гормонов и в регуляцию функционирования половой системы [12, 94, 95]. Показано также, что изменение уровней половых гормонов вызывает изменение уровня различных нейропептидов, в том числе в-эндорфина, кортикотропин-подобного пептида, б-меланотропин-стимулирующего гормона, вещества Р [156, 346].

Обнаруженные к настоящему времени возрастные изменения уровня регуляторных пептидов, вероятно, связаны с изменениями в функционировании ферментных систем, участвующих в их синтезе и деградации.

Активность Tyr-аминопептидазы в коре головного мозга котят с возрастом повышается, а Asp- аминопептидазы - снижается [259].

Активность пироглутамил-пептидазы І снижается с Р9 до Р20 в гипоталамусе, стриатуме, коре и гипофизе крыс [179, 259]. Активность фермента с Р20 до Р25 не изменяется. При этом в гипоталамо-гипофизарной оси наблюдаются достоверные отличия активности фермента у самцов и самок всех исследованных возрастов.

Уровень пролин-иминопептидазы в сыворотке крови детей старше 1 года уменьшается до 20 лет и несколько повышается позже [258]. Половых отличий при этом не обнаружено.

Активность диппептидиламинолпептидазы ІV и аминопептидазы М в мозге и изолированных микрососудах мозга во время снижается во время первых 8 недель постнатального развития. Активность аминопептидазы А снижается к Р14, а затем к 8 неделям возвращается к исходному уровню. При этом обнаружены половые отличия [129, 180].

Активность нейтральной эндопептидазы 24.11 в гипоталамусе крыс повышается с Р0 до Р7 и далее не изменяется, в коре больших полушарий она повышается с Р0 до Р30, а в мозжечке - снижается и далее не изменяется [278].

Активность металлоэндопептидазы 24.15 в коре повышается от Р0 до Р7, к Р90 возвращается к исходному уровню. В гипоталамусе и мозжечке уровень фермента постоянен в периоде Р0-Р30 и снижается к Р90 [278].

Уровень АПФ в стриатонигральном тракте и коре больших полушарий крыс возрастает от Р0 до Р20, а затем несколько снижается [326].

Активность КПН изменяется с возрастом. У эмбрионов крыс мРНК КПН экспрессируется как в нервной (таламус, гипоталамус, средний и продолговатый мозг, кортикальная пластинка и спинной мозг, а также периферические ганглии), так и в других тканях (сердце и первичные хрящи) [353]. В постнатальном периоде активность КПН у крыс обоего пола повышается, причем динамика изменения активности фермента в отделах мозга и периферических тканях различается [41, 142, 278]. Нужно отметить расхождения данных, опубликованных разными авторами, касающихся изменения активности КПН в одних и тех же отделах мозга в постнатальном периоде, что, вероятно, связано с различиями в экспериментальной методике.

Наибольшие различия (в частности, в гипоталамусе) отмечены непосредственно в период полового созревания. Начиная с 90-дневного возраста, достоверные половые различия в активности данного фермента обнаружены лишь в почках и половых железах. Особенно это выражено у 120-дневных крыс [101].

Имеются данные о возрастных изменениях активности ФМСФ-ингибируемой карбоксипептидазы в мозге и периферических тканях самцов крыс в период с рождения до 120-дневного возраста [41]. Причем в тканях с наибольшим содержанием данного фермента (гипофизе, семенниках, надпочечниках) отмечается снижение его активности с возрастом. Влияние возраста на активность фермента более выражено в мозге и тканях самцов, чем у самок [41, 101, 102]. Динамика возрастных изменений у животных разного пола в большинстве случаев совпадает.

Таким образом, приведенные сведения указывают на возможность вовлечения ферментов обмена физиологически активных пептидов в регуляцию онтогенетических изменений уровня этоих пептидов, а также в определение их половых различий. И представляется интересным исследование возрастной динамики ферментативной активности (в частности КПН и ФМСФ-КП) у крыс обоего пола, испытавших алкоголизацию в эмбриональном периоде.

* * *

Суммируя все выше изложенное, можно заключить:

В процессе онтогенеза в организме происходят значительные изменения обмена регуляторных пептидов и ферментов их обмена.

Важная роль в обмене пептидов принадлежит основным карбоксипептидазам. Они участвуют в конечной стадии процессинга неактивных предшественников пептидов и в начальных стадиях их инактивации, тем самым, контролируя уровень и соотношение биологически активных пептидов в организме.

Хроническая алкоголизация изменяет уровни и соотношение различных регуляторных пептидов (в первую очередь опиоидных пептидов, выполняющих важную роль в патогенезе алкоголизма) и активность ферментов их обмена.

Пренатальное воздействие этанола изменяет содержание регуляторных пептидов (в том числе и опиоидных) и формирует предрасположенность к развитию алкоголизма.

Все отмеченные изменения зависят от пола.

Представляет интерес сравнительное изучение активности основных карбоксипептидаз в тканях самок и самцов крыс, испытавших эмбриональное воздействие этанола, исследование активности этих ферментов при последующем постнатальном хроническом воздействии этанола. Эти данные могут иметь важное значение для выяснения биологической роли основных карбоксипептидаз в организме при алкоголизме, для понимания механизмов развития возрастных и половых отличий активности ферментов и уровней регуляторных пептидов при этом заболевании, механизмов формирования этанольной зависимости у потомков алкоголиков.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Материалы исследования

Опыты проводили на новорожденных, а также в возрасте 14, 28, 45, 120 суток после рождения, самках и самцах белых беспородных крыс. Животных содержали в стандартных условиях вивариума.

Животных декапитировали, извлекали головной мозг, гипофиз, надпочечники и половые железы. Ткани помещали в охлажденный физиологический раствор, очищали от оболочек и кровеносных сосудов, высушивали фильтровальной бумагой. Затем выделяли отделы мозга - гипоталамус и стриатум у всех крыс, а также четверохолмие, гиппокамп и большие полушария у животных в возрасте 120 суток.

Образцы выделенных тканей гомогенизировали в стеклянном гомогенизаторе Поттера в 20 мМ натрий ацетатном буфере (рН 5,6), содержащем 50 мМ NaCl, в соотношении 1:100 (вес:объем). Гомогенаты использовали в качестве источников КПН и ФМСФ-КП.

В качестве специфических ингибиторов применяли ФМСФ (”Serva”, США) и ГЭМЯК (“Serva”, США). В качестве субстратов использовали дансил-Phe-Ala-Arg и дансил-Phe-Leu-Arg. Все остальные реактивы были отечественного производства с квалификацией ”ХЧ” и ”ОСЧ”.

2.2. Методы исследования

2.2.1. Моделирование хронического потребления этанола.

Для исследования онтогенетических изменений активности основных карбоксипептидаз при внутриутробном хроническом воздействии этанола использовали две группы животных: пренатально алкоголизированную (Э) и контрольную (К). Животные пренатально алкоголизированной группы являлись потомством самок, получавших в течение всего периода беременности в качестве единственного источника жидкости 12 % раствор этанола, содержащий 5 % сахарозы; контрольной группы - потомством самок, получавших в этот период только 5 % раствор сахарозы.

Кроме того, для исследования активности данных ферментов при последующей постнатальной алкоголизации крыс, подвергнутых влиянию этанола в эмбриональном периоде, взрослых животных каждой группы разделили на две подгруппы: постнатально алкоголизированную и контрольную. Животные постнатально алкоголизированной подгруппы получали в течение 15 суток в качестве единственного источника жидкости 12% раствор этанола, содержащий 5% сахарозы; крысы контрольной подгруппы - 5% раствор сахарозы. Таким образом, было сформировано четыре подгруппы взрослых животных: контрольная (КК), пренатально алкоголизированная (ЭК), постнатально алкоголизированная (КЭ), пренатально и постнатально алкоголизированная (ЭЭ).

2.2.2. Метод определения активности ферментов

Активность ферментов определяли флюорометрическим методом по Fricker L. D., Snyder S. H. [330].

Для определения активности КПН 50 мкл гомогената ткани добавляли к 150 мкл (контрольная проба) натрий-ацетатного буфера или к смеси 140 мкл буфера и 10 мкл 25 мкМ водного раствора ингибитора ГЭМЯК (опытная пробя). При определении активности ФМСФ-КП использовали ту же схему, с той лишь разницей, что в качестве ингибитора использовали 25 мМ спиртовой раствор ФМСФ, который добавляли после смешивания гомогената ткани с буфером.

Пробы преинкубировались 8 мин при 37оС.

Реакцию начинали прибавлением 50 мкл 210 мкМ субстрата - дансил-Phe-Ala-Arg для определения активности КПН или дансил-Phe-Leu-Arg для определения активности ФМСФ-КП (конечная концентрация субстратов в реакционной смеси составляла 42 мкМ). Далее пробы инкубировали 60 мин при 37оС. Реакцию останавливали прибавлением 50 мкл 1 М раствора соляной кислоты. Для экстракции продукта реакции - дансил-Phe-Ala или дансил-Phe-Leu - к пробам приливали 1,5 мл хлороформа и встряхивали в течение 60 с. Для разделения фаз пробы центрифугировали 5 мин при 1000 g. Измерение флюоресценции хлороформной фазы проводили на флюориметре ФМЦ-2 в кювете толщиной 1 см при ex=360 нм и em=530 нм. В качестве стандарта использовали 1 мкМ раствор дансил-Phe-Ala в хлороформе.

Активность ферментов определяли как разность в накоплении продукта реакции в пробах, не содержащих и содержащих ингибитор, и выражали в нмоль дансил-Phe-Ala или дансил-Phe-Leu, образовавшихся за 1 мин инкубации, в пересчете на 1 мг белка.

Содержание белка в пробах определяли по методу Lowry и соавт. [244].

2.2.3. Метод проведения теста «открытое поле»

Взрослых животных в возрасте 120 дней однократно тестировали по методу «открытое поле» [73]. Для этого животных помещали на ярко освещенную площадку (100х100 см), разделенную на квадраты (20х20 см). В течение 5 минут оценивали следующие поведенческие параметры:

· количество посещений периферических квадратов;

· количество посещений центральных квадратов;

· суммарную двигательную активность (общее количество посещении периферических и цетральных квадратов);

· суммарную вертикальную активность (количество стоек);

· общую активность (суммарную двигательную и вертикальную активность);

Рассчитывали отношение суммарной двигательной к суммарной вертикальной активности.

2.2.4. Статистическая обработка результатов исследования

Экспериментальные данные обрабатывали статистически. Достоверность отличий между средними определяли с использованием t-критерия Стьюдента [68]. Корреляционный и дисперсионный анализы проводили с помощью программы Statgraphics (версия 3.0) (“STSC, Inc.” США) в режимах Simple Correlation, One-Way ANOVA и Multifactor ANOVA. Принадлежность подгрупп животных к разным гомогенным группам оценивали с помощью Multiple range analysis (Statgraphics (версия 3.0) (“STSC, Inc.” США)). Принадлежность возрастных подгрупп к разным гомогенным группам проводили только в случае достоверности критерия Фишера. При этом оценивали количество гомогенных групп, образуемых экспериментальными подгруппами, с уровнем достоверности р<0,05. Баллы подгруппам присваивали на основании их принадлежности к разным гомогенным группам по мере увеличения среднего. При этом минимальный балл получала временная подгруппа с минимальным средним, максимальный балл - временная подгруппа с максимальным средним, а дробный балл (1,5) получали подгруппы, входящие одновременно в две гомогенные группы. На основании присвоенных баллов делали вывод о динамике изменения активности ферментов.

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1. Исследование активности основных карбоксипептидаз в тканях крыс разного возраста, испытавших пренатальное воздействие этанола

3.1.1. Исследование активности карбоксипептидазы Н в тканях пренатально алкоголизированных крыс разного возраста

Согласно данным дисперсионного анализа пренатальное воздействие этанола достоверно влияло на активность КПН в стриатуме, надпочечниках и семенниках самцов, в гипоталамусе, стриатуме и надпочечниках самок (табл. 1).

Табл. 1. Дисперсионный анализ влияния пренатальной алкоголизации на активность КПН в тканях животных разного возраста (значения критерия Фишера FФ).

Ткань

Самцы

Самки

FФ

Гипоталамус

0,16

7,65**

Стриатум

4,75*

4,85*

Гипофиз

1,78

0,00

Надпочечники

9,97**

9,16**

Половые железы

4,31*

1,17

Примечание: здесь и в табл. 2-8, 11, 12: n = 5ч8; достоверность критерия Фишера * - р < 0,05, ** - р < 0,01, *** - р < 0,001.

При этом у самцов наблюдалось достоверное снижение активности КПН в стриатуме в возрасте Р0 и Р14 (рис. 1), в гипофизе в возрасте Р14, в надпочечниках в возрасте Р28 и Р120, в семенниках в Р0 и Р120 (рис. 2) по сравнению с интактными животными. У пренатально алкоголизированных самок наблюдалось достоверное снижение активности КПН в гипоталамусе в Р0, Р14, Р28, в стриатуме в Р14, Р45 (рис. 3), в гипофизе в Р0, в надпочечниках и яичниках в Р0 (рис. 4); увеличение активности в гипоталамусе (рис. 3) и в гипофизе в Р120 (рис. 4). Во всех остальных случаях изменений ферментативной активности не выявлено.

Наиболее существенные изменения активности КПН (40% - 50%) наблюдались в стриатуме, гипофизе, половых железах животных обоего пола и гипоталамусе самок на ранних этапах постнатального развития, а так же в надпочечниках самцов в Р28 и Р120, в семенниках в Р120, в гипофизе самок в Р120 (113%).

По данным дисперсионного анализа активность КПН достоверно зависела от возраста во всех тканях животных, кроме гипоталамуса самок (табл. 3) и семенников самцов алкоголизированных групп, а также гипоталамуса самцов контрольной и алкоголизированной групп (табл. 2).

Табл. 2. Дисперсионный анализ влияния возраста на активность КПН в тканях самцов крыс (значения критерия Фишера FФ, баллы возрастных групп).

Ткань

Контрольные группы

Алкоголизированные группы

FФ

Возрастные группы

FФ

Возрастные группы

n

0

14

28

45

120

n

0

14

28

45

120

Гипоталамус

0,36

1,81

Стриатум

7,90***

2

1

1,5

2

1

1

31,58***

3

1

2

3

2

2

Гипофиз

35,53***

4

1

2,5

4

3

2

11,52***

3

1

1,5

3

2,5

1,5

Надпочечники

12,72***

2

1

1

2

1

1

9,18***

3

3

2,5

2

1,5

1

Семенники

5,13**

2

1,5

1,5

1

1

2

1,19

Табл. 3. Дисперсионный анализ влияния возраста на активность КПН в тканях самок крыс (значения критерия Фишера FФ, баллы возрастных групп).

Ткань

Контрольные группы

Алкоголизированные группы

FФ

Возрастные группы

FФ

Возрастные группы

n

0

14

28

45

120

n

0

14

28

45

120

Гипоталамус

5,78**

2

1,5

2

1,5

1,5

1

0,04

Стриатум

15,40***

3

1

3

2

2

1,5

11,93***

3

1

2

3

1,5

1,5

Гипофиз

12,54***

2

1

2

2

2

1

8,74***

2

1

2

2

2

2

Надпочечники

33,83***

3

1,5

3

2

1,5

1

8,12***

2

1

2

1,5

1

1

Яичники

8,37***

3

2,5

3

1,5

1

1,5

12,97***

3

1,5

3

2

1

1,5

В стриатуме интактных самок (рис. 3) активность КПН значительно повышалась от Р0 к Р14, а затем постепенно снижалась к Р120 практически до исходного уровня. При пренатальной алкоголизации активность фермента постепенно повышалась от Р0 к Р28, а затем снижалась к Р45 - Р120 до уровня Р28.

В гипофизе интактных самок (рис. 4) активность КПН повышалась от Р0 к Р14 - Р45, а затем вновь снижалась до исходного уровня. У пренатально алкоголизированных самок активность фермента также повышалась от Р0 к Р14 - Р45, но не уменьшалась к Р120.

У интактных самок в надпочечниках (рис. 4) активность фермента существенно повышалась от Р0 к Р14, а затем постепенно снижалась к Р120 до исходного уровня; в яичниках (рис. 4) активность КПН значительно снижалась от максимального уровня в Р0 - Р14 к Р28 - Р120. У алкоголизированных самок возрастная динамика изменения активности фермента в надпочечниках и яичниках была сходна с интактными крысами.

Таким образом, у пренатально алкоголизированных животных отмечалось нарушение возрастной динамики изменения активности КПН.

Активность КПН зависела от пола в гипофизе интактных животных, в гипоталамусе и надпочечниках алкоголизированных животных (табл. 4). Ферментативная активность зависела от взаимодействия пола и возраста во всех тканях контрольных животных, кроме надпочечников, а также в гипофизе и надпочечниках алкоголизированных крыс (табл. 4). Влияние пола у алкоголизированных животных меньше зависело от возраста, чем у контрольных.

Табл. 4. Дисперсионный анализ влияния пола и взаимодействия пола и возраста на активность КПН (значения критерия Фишера: FФ1- влияние пола, FФ2 - взаимодействие влияния пола и возраста).

Ткань

Контрольные группы

Алкоголизированные группы

FФ1

FФ2

FФ1

FФ2

Гипоталамус

1,79

2,92*

7,72**

1,16

Стриатум

1,40

4,58**

0,25

0,68

Гипофиз

5,22*

6,82***

0,30

3,35*

Надпочечники

1,34

1,49

6,31*

4,44**

Половые железы

0,90

3,97**

0,14

0,86

У контрольных самок в гипоталамусе, по сравнению с самцами, активность КПН была выше в Р14, ниже в Р120 и одинаковой в остальные возрастные периоды. У пренатально алкоголизированных самок - ниже в Р28 и не отличалась в других возрастных группах от контрольных самцов (рис. 1, 3).

В стриатуме контрольных самок активность КПН была выше, чем у самцов в Р14 и Р45, но не отличалась у алкоголизированных крыс в течение всего исследуемого периода (рис. 1, 3).

У интактных самок, по сравнению с самцами, активность КПН в гипофизе была одинаковой в Р0, выше в Р14 и ниже в Р28 - Р120; у пренатально алкоголизированных - ниже в Р0 - Р14, не отличалась в Р28 - Р45 и выше в Р120.

В надпочечниках интактных самок ферментативная активность была одинаковой в Р0, Р45 и Р120, выше в Р14 и ниже в Р28 по сравнению с интактными самцами; у алкоголизированных самок - ниже в Р0, выше в Р14 и Р28, одинаковой в Р45 и Р120 (рис. 2, 4).

В яичниках контрольных самок активность исследуемого фермента была ниже в Р45 и Р120 по сравнению с семенниками самцов. У алкоголизированных животных обоего пола активность КПН в половых железах была одинаковой с Р0 по Р120 (рис. 1-2).

Т. е., при внутриутробном воздействии этанола произошло изменение полового соотношения активности КПН. В некоторых случаях (в гипоталамусе в Р14 и Р120, в стриатуме в Р14 и Р45, в гипофизе в Р28 и Р45, в половых железах в Р45 и Р120) активность КПН стала одинаковой у животных разного пола, в других (в гипоталамусе в Р28 и в гипофизе в Р0) у самок активность КПН стала ниже, чем у самцов, а в гипофизе в Р120 и в надпочечниках в Р28 половые отличия сохранились, но соотношение активности стало противоположным.

Таким образом, полученные результаты показывают, что у контрольных животных активность КПН изменялась с возрастом практически во всех тканях. Причем наибольшая ферментативная активность отмечалась у самцов в Р28 во всех тканях (кроме семенников), в семенниках в Р120, а у самок в Р14 во всех тканях. Это согласуется с литературными данными о наиболее существенных изменениях у самок крыс в инфантильном периоде (с Р8 по Р21), у самцов - в ювенильном (с Р21 по Р32) и препубертатном (после Р32) периодах [12]. Это подтверждает ранее высказанное предположение о вовлечение КПН в процесс пубертации и формирование половых отличий [88, 101].

Возрастная динамика активности КПН в отделах мозга отличалась от таковой в периферических тканях. Вероятно, это объясняется вовлечением изучаемого фермента в метаболизм разных пептидов в мозге и в периферических тканях [41, 124, 174].

При влиянии пренатальной алкоголизации наблюдалось нарушение возрастной динамики изменения активности КПН. Причем у самок наиболее существенно она нарушалась в гипоталамусе и стриатуме, а у самцов - в надпочечниках и семенниках. Возможно, пренатальная алкоголизация, изменяя уровень активности КПН - одного из ферментов обмена биологически активных пептидов, у самок нарушала формирование и функционирование отделов ЦНС, а у самцов - периферических звеньев ГГНС и ГГГС [109, 114, 177, 182, 190, 191, 208, 269, 280, 281, 282, 291, 313].

Изменение активности КПН в тканях эмбрионально алкоголизированных животных в разные возрастные периоды происходило преимущественно в сторону снижения. И только в гипофизе и гипоталамусе самок в Р120 активность КПН увеличилась. Причем в гипоталамусе (отделе, играющем важнейшую роль в патогенезе алкоголизма) самок наблюдались отличия практически в течение всего периода онтогенеза. Тогда как у самцов в этом отделе изменения активности КПН с Р0 до Р120 не выявлены.

Внутриутробное воздействие этанола вызвало нарушение половых отличий активности данного фермента, что, вероятно, связано с нарушением процесса пубертации и формирования половых отличий у потомков алкоголиков [109, 138, 177, 239, 264, 265, 271, 280, 281].

3.1.2. Исследование активности ФМСФ-ингибируемой карбоксипептидазы в тканях пренатально алкоголизированных крыс разного возраста

Согласно данным дисперсионного анализа пренатальное воздействие этанола достоверно влияло на активность ФМСФ-КП в яичниках самок (табл. 5).

Табл. 5. Дисперсионный анализ влияния пренатальной алкоголизации на активность ФМСФ-КП тканях животных разного возраста (значения критерия Фишера FФ)

Ткань

Самцы

Самки

FФ

Гипоталамус

0,21

2,49

Стриатум

1,99

1,48

Гипофиз

0,61

0,29

Надпочечники

0,04

1,09

Половые железы

0,80

4,85*

При этом у самцов (рис. 5, 6) наблюдалось достоверное снижение активности ФМСФ-КП в стриатуме в Р14 и Р120, в гипофизе и семенниках в Р14.

У пренатально алкоголизированных самок активность ФМСФ-КП была ниже во всех исследованных тканях в Р14 и в яичниках в Р120, и была выше в гипофизе в Р120 (рис. 7, 8) по сравнению с интактными самками. Во всех остальных случаях изменений ферментативной активности не выявлено.

Наиболее существенные изменения активности ФМСФ-КП (23% - 48%) наблюдались в гипофизе, стриатуме, половых железах самцов и во всех тканях самок на ранних этапах постнатального развития, а также в яичниках самок в Р120.

По данным дисперсионного анализа возраст достоверно влиял на ФМСФ-КП во всех отделах и тканях животных обоего пола контрольной и алкоголизированной групп, кроме гипоталамуса и яичников алкоголизированных самок (табл. 6, 7).

Табл. 6. Дисперсионный анализ влияния возраста на активность ФМСФ-КП в тканях самцов крыс (критерий Фишера FФ, баллы возрастных подгрупп).

Ткань

Контрольные группы

Алкоголизированные группы

FФ

Возрастные группы

FФ

Возрастные группы

n

0

14

28

45

120

n

0

14

28

45

120

Гипоталамус

3,32*

2

1,5

2

1,5

1,5

1

4,46**

2

1,5

2

2

1,5

1

Стриатум

9,15***

3

2,5

3

2

1,5

1

4,03*

2

1,5

1,5

2

1,5

1

Гипофиз

7,70***

3

2

3

1,5

2,5

1

7,20***

3

1,5

3

1,5

2,5

1

Надпочечники

5,42**

2

2

2

1

1,5

1

4,05*

2

2

1,5

1,5

1

1

Семенники

45,70***

4

3

4

2,5

2

1

14,09***

2

2

2,5

2

2

1

При этом наблюдалась следующая возрастная динамика активности ФМСФ-КП. В гипоталамусе самцов активность ФМСФ-КП повышалась к Р14 у интактных и к Р14 - Р28 у алкоголизированных крыс, и значительно снижалась к Р120 у обеих групп (рис. 5).

В стриатуме контрольных самцов активность фермента плавно уменьшалась от максимального значения в Р0 - Р14 к Р120; у алкоголизированных самцов активность ФМСФ-КП была наибольшей в Р28 и наименьшей в Р120 (рис. 5).

В гипофизе контрольных самцов активность ФМСФ-КП повышалась от Р0 до максимального значения к Р14, затем снижалась к Р28, вновь, но в меньшей степени, повышалась к Р45, а к Р120 стала ниже исходного уровня. В гипофизе алкоголизированных самцов динамика изменения ферментативной активности практически не отличалась от интактных животных (рис. 6).

Табл. 7. Дисперсионный анализ влияния возраста на активность ФМСФ-КП в тканях самок крыс (критерий Фишера FФ, баллы возрастных подгрупп).

Ткань

Контрольные группы

Алкоголизированные группы

FФ

Возрастные группы

FФ

Возрастные группы

n

0

14

28

45

120

n

0

14

28

45

120

Гипоталамус

6,91***

3

2

3

2,5

1,5

1

2,32

2

1,5

1,5

2

1,5

1

Стриатум

22,89***

3

1,5

3

2

1,5

1

7,20***

2

1,5

2

2

1,5

1

...........


Страницы: 1 | [2] | 3 | 4 | 5 |


......
Для просмотра полного текста работы, скачайте ее - бесплатно.







 
 
Показывать только:


Портфель:
Выбранных работ  

Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Активность основных карбокмипептидаз в тканях пренатально алкоголизированных крыс | диссертация

СтудентБанк.ру © 2013 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег