1
3
РОССИЙСКАЯ АКАДЕМИЯ МЕДИЦИНСКИХ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ТОМСКИЙ НАУЧНЫЙ ЦЕНТР ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕДИЦИНСКОЙ ГЕНЕТИКИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ
На правах рукописи
БРАГИНА
ЕЛЕНА ЮРЬЕВНА
СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТРУКТУРЫ НАСЛЕДСТВЕННОЙ КОМПОНЕНТЫ ПОДВЕРЖЕННОСТИ К БРОНХИАЛЬНОЙ АСТМЕ И ТУБЕРКУЛЕЗУ ПО ГЕНАМ ФЕРМЕНТОВ МЕТАБОЛИЗМА КСЕНОБИОТИКОВ
03.00.15. - генетика
Диссертация
на соискание ученой степени
кандидата биологических наук
Научный руководитель:
академик РАМН,
профессор В. П. Пузырев
ТОМСК-2005
ОГЛАВЛЕНИЕ
Список сокращений 4
Введение 6
Глава 1. Обзор литературы 12
1.1. Ферментативная система биотрансформации ксенобиотиков 12
1.1.1. Cемейства ферментов I и II фаз метаболизма 12
1.1.2. Свойства ферментов метаболизма ксенобиотиков 14
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков 17
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез) 21
1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология 37
Глава 2. Материал и методы исследования 48
2.1. Характеристика обследованных групп населения 48
2.1.1. Характеристика группы больных туберкулезом 48
2.1.2. Характеристика группы больных бронхиальной астмой 50
2.2. Характеристика методов исследования 52
2.2.1. Клинико-лабораторные методы исследования 52
2.2.2. Молекулярно-генетические методы исследования 54
2.2.3. Статистические методы анализа 57
Глава 3. Результаты и обсуждение 60
3.1. Полиморфизм генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2E1, CYP2C19) у жителей г. Томска 60
3.2. Оценка роли полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза 65
3.2.1. Ассоциация полиморфных вариантов генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 с атопической бронхиальной астмой 65
3.2.2. Ассоциация полиморфизма генов ферментов метаболизма ксенобиотиков с туберкулезом 70
3.2.3. Сравнительный анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза 76
3.3. Анализ ассоциаций генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и туберкулезом на семейном материале 78
3.4. Оценка связи комбинаций генотипов генов ферментов биотрансформации ксенобиотиков с туберкулезом и бронхиальной астмой 81
3.5. Связь полиморфизма генов ферментов метаболизма ксенобиотиков с изменчивостью количественных признаков у больных бронхиальной астмой и туберкулезом 85
Заключение 101
Выводы 107
Литература 109
СПИСОК СОКРАЩЕНИЙ
95% CI - 95% доверительный интервал;
CYP - гены цитохрома Р450;
GST - глутатион S-трансфераза;
GSTT1 (и1) - глутатион S-трансфераза тета 1;
GSTT1+ - гомо- и гетерозиготы гена GSTT1;
GSTМ1 (м1) - глутатион S-трансфераза мю 1;
GSTМ1+ - гомо- и гетерозиготы гена GSTМ1;
GSTР1 (р1) - глутатион S-трансфераза пи 1;
HLA - главный комплекс гистосовместимости человека;
Ig - иммуноглобулины;
IL1B - ген интерлейкина 1 В;
IL1RN - ген антагониста рецептора к интерлейкину 1;
INF-г - гамма интерферон;
mEH - микросомальная эпоксигидролаза;
NAT2 - ген N-ацетилтрансферазы;
NRAMP1 (NRAMP1) - ген макрофагального белка (макрофагальный белок), ассоциированного с естественной резистентностью;
OR (Odds ratio) - отношение шансов;
P450 - цитохромы Р450;
S.D. - стандартное отклонение;
S.E. - стандартная ошибка;
TDT (Transmission/Disequilibrium Test) - тест на неравновесие по сцеплению;
TNFА - ген фактора некроза опухолей;
VDR - ген рецептора к витамину D;
АБП - антибактериальные препараты;
АЛТ - аланинаминотрасфераза;
АСТ - аспартатаминотрансфераза;
БА - бронхиальная астма;
БГР (BHR) - бронхиальная гиперреактивность;
ИЛ - интерлейкин (ы);
МБТ (M. tuberculosis) - микобактерия туберкулеза;
ОМЛ - острая миелоидная лейкемия;
ОФВ1 (FEV1) - объем форсированного выдоха за первую секунду;
ПСВ (PEF)- пиковая скорость выдоха;
РС20 - наличие бронхиальной гиперреактивности, установленное с помощью ингаляционного провокационного теста с метахолином;
РЛ - рак легкого;
РРП - рак ротовой полости;
РХФ - равновесие Харди-Вайнберга;
САП - скарификационные аллергопробы;
ТБ - туберкулез;
ФВД - функции внешнего дыхания;
ФЖЕЛ (FVC) - форсированная жизненная емкость;
ФМК/ФБК - ферменты метаболизма/биотрансформации ксенобиотиков.
ВВЕДЕНИЕ
Актуальность проблемы.
Генетика широко распространенных болезней человека является активно развивающейся областью исследований. Однако темп накопления сведений о конкретных генах, участвующих в их возникновении и развитии существенно уступает известным на сегодня знаниям по генетике моногенных (менделевских) болезней. Еще более скромные успехи отмечены в изучении генетических основ подверженности к инфекционным заболеваниям. В последнем случае преобладают исследования, касающиеся изучения генетических характеристик возбудителей болезней, их геномов в формировании восприимчивости (устойчивости) человека к конкретной инфекции и клинического полиморфизма болезни. Наряду с этим направлением - изучение генома самого человека, контактирующего с инфекцией, заболевшего или сохранившего здоровье - становится важной областью генетических исследований [Пузырев и др., 2002; Frodshem, Hill, 2004]. Заметим, что отечественным генетиком А.С. Серебровским (1939) было высказано положение, обозначенное им как противоречие «единства бесконечного числа признаков и конечного числа генов», нашедшее, спустя более полувека, развитие в геномных исследованиях человека и обсуждение проектов «Феном человека» [Freimer, Sabatti, 2003] и «Феном мыши» [Paigen, Eppig, 2000]. «Важное различие между геномом и феномом состоит в том, что в то время как геном ограничен (приблизительно 3 млрд. пар оснований у человека), феном - нет (его предел зависит от того, как далеко мы хотим двигаться)» - эта мысль, сформулированная K. Paigen и J.T. Eppig (2000) тождественна положению А.С. Серебровского (1939). Подмеченное сходство взглядов классика генетики XX века и современных исследователей генома человека на гено-фенотипические взаимоотношения [Пузырев, 2001] является, по нашему мнению, обоснованием перспективности высказываемых и ранее гипотез о том, что клинически различные группы (нозологии) заболеваний человека могут контролироваться общим набором генов подверженности [Becker et al., 1998].
С позиции изучения вклада «общих» генов в развитие различных болезней особую актуальность приобретает исследование системы генов метаболизма ксенобиотиков, поскольку ферментами этой системы осуществляется метаболизм не только большинства разнообразных по химической структуре экзогенных молекул, но и многочисленных эндогенных веществ, например, медиаторов воспаления. Система ферментов метаболизма ксенобиотиков представляет собой сформировавшийся в процессе эволюции механизм адаптации организма к воздействию токсичных экзогенных и эндогенных веществ. Предполагается, что различия в скорости деградации различных субстратов ферментами метаболизма могут лежать в основе неодинаковой восприимчивости к ряду заболеваний. Изучению участия генов этой системы в развитии онкопатологии, эндометриоза, бронхиальной астмы, хронической обструктивной болезни легких, инфекционных заболеваний посвящены многие работы отечественных и зарубежных авторов [Lin et al., 1998; Иващенко и др., 2001; Ляхович и др., 2000, 2002; Delfino et al., 2000; Вавилин и др., 2002; Rollinson et al., 2003; Бикмаева и др., 2004]. Очевидно, что генетические различия в регуляции, экспрессии и активности генов ферментов биотрансформации ксенобиотиков являются решающими факторами в развитии болезни и позволяют рассматривать ее как важное звено в этиологии и патогенезе этих заболеваний.
Особое внимание исследователей привлекает участие ферментативной системы метаболизма в биотрансформации лекарственных препаратов [Nebert, 1997]. Изучение полиморфизма генов этой системы в различных популяциях, обусловливающего существование индивидуальных особенностей метаболизма лекарственных препаратов, проявляющихся различиями в эффективности терапии и наличием многообразных побочных эффектов медикаментозной нагрузки, являются достаточно перспективными в практическом применении.
Представляется перспективным проведение сравнительного анализа участия белков ферментов метаболизма ксенобиотиков в возникновении и развитии заболеваний, которые с одной стороны, часто сочетаются друг с другом у одного индивидуума (синтропии), с другой - редко или совсем не встречаются вместе (дистропии).
Туберкулез (ТБ) и бронхиальная астма (БА), являющиеся частой патологией народонаселения, по-видимому, относятся к дистропным заболеваниям. Так, эпидемиологическая парадигма свидетельствует о том, что риск развития атопической БА и ее различных клинических проявлений в течение жизни намного ниже у индивидов, перенесших ТБ в детском возрасте [Von Hertzen et al., 1999, Shirakawa et al., 1997]. Тем не менее, показано, что при БА и ТБ имеет место общая генетическая основа (гены системы HLA, интерлейкинов и их рецепторных антагонистов и др.), обусловленная функциональной значимостью продуктов экспрессии этих генов в инфекционно-аллергическом процессе [Sandford et al., 1996; Greenwod et al., 2000; Bellamy, 2000; Sengler et al., 2002].
Таким образом, изучение роли полиморфных вариантов генов системы метаболизма в развитии БА и ТБ актуально и предполагает исследование их связи с клиническими особенностями течения заболеваний для понимания механизмов взаимодействия в процессе реализации наследственной информации на уровне целостного организма.
Цель работы: Провести сравнительный анализ значения полиморфизма генов ферментов метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза легких, оценить их роль в формировании клинических проявлений данных заболеваний у жителей города Томска.
Задачи исследования:
1. Изучить распространенность частот полиморфных вариантов генов ферментов метаболизма ксенобиотиков (CYP2C19, CYP2E1, GSTT1, GSTM1 и GSTP1) в выборке здоровых индивидов.
2. Оценить связь полиморфизмов исследуемых генов с атопической бронхиальной астмой и туберкулезом легких.
3. Изучить связь полиморфных вариантов, включенных в исследование генов, с клиническими особенностями течения бронхиальной астмы и туберкулеза легких, а также с патогенетически значимыми для этих заболеваний качественными и количественными признаками.
4. Провести сравнительный анализ роли полиморфных вариантов генов системы метаболизма ксенобиотиков в развитии бронхиальной астмы и туберкулеза.
Научная новизна:
Получены новые знания о роли генов ферментов биотрансформации ксенобиотиков (GSTT1, GSTM1, GSTP1, CYP2E1, CYP2C19) в развитии бронхиальной астмы и туберкулеза легких у жителей города Томска. Впервые проведена сравнительная оценка значимости исследуемых полиморфных вариантов генов системы метаболизма в развитии бронхолегочных патологий (на примере бронхиальной астмы и туберкулеза). Выявлены ассоциации полиморфизма генов GSTM1 (делеция) и CYP2E1 (7632T>A) с развитием бронхиальной астмы, а GSTP1 (313A>G) - с туберкулезом. Изучено влияние полиморфных вариантов генов системы метаболизма на развитие различных клинических особенностей течения заболеваний. Впервые проведена сравнительная оценка относительного риска в зависимости от комбинаций генотипов исследуемых генов для развития бронхиальной астмы и туберкулеза. Установлена роль генов глутатионовых S-трансфераз (GSTT1, GSTM1, GSTP1) и цитохромов Р450 (CYP2C19, CYP2E1) в детерминации изменчивости количественных, патогенетически значимых для заболеваний признаков. Показана связь полиморфного варианта 313A>G гена GSTP1 с изменчивостью уровня аланинаминотрансферазы у больных туберкулезом легких во время лечения антимикобактериальными препаратами.
Практическая значимость:
Полученные результаты исследования могут быть положены в основу разработки скрининговых программ по выявлению лиц с повышенным риском развития бронхиальной астмы и туберкулеза. Сведения о связи полиморфных вариантов генов ферментов метаболизма ксенобиотиков с изменчивостью показателей печеночной функции могут быть учтены при проведении профилактических мероприятий с целью предотвращения проявлений гепатотоксичности во время противотуберкулезной терапии. Материалы работы могут быть использованы в учебно-методическом процессе на биологических и медицинских факультетах ВУЗов. Полученная информация о полиморфизме генов ферментов биотрансформации ксенобиотиков у русских жителей города Томска может быть использована при проведении генетико-эпидемиологических исследований широко распространенных заболеваний.
Положения, выносимые на защиту:
1. Генетическими маркерами подверженности к бронхиальной астме могут быть генотип Т/А (полиморфизм 7632Т>А) гена CYP2E1 и «нулевой» генотип делеционного полиморфизма гена GSTM1.
2. У жителей города Томска генотип G/G гена GSTP1 (полиморфизм 313A>G) снижает риск развития туберкулеза.
3. Фактором генетической предрасположенности к бронхиальной астме является «нулевой» генотип гена GSTM1 как в сочетании с генотипом GSTT1+, так и в комбинации с гетерозиготным генотипом гена CYP2E1 (полиморфизм 7632Т>А).
4. «Нулевой» генотип гена GSTM1 и генотип *1/*1 гена CYP2C19 оказывают влияние на формирование клинических фенотипов бронхиальной астмы, определяющихся такими показателями как: уровень общего иммуноглобулина Е в сыворотке крови и форсированная жизненная емкость легких.
5. Изменчивость признаков, характеризующих особенности клинического течения туберкулеза (уровень эритроцитов и аланинаминотрансферазы), определяется полиморфными вариантами генов CYP2C19 (681G>A) и GSTP1 (313A>G) системы метаболизма ксенобиотиков.
Апробация работы:
Основные результаты исследования по теме диссертационной работы доложены и обсуждены на межлабораторных научных семинарах ГУ НИИ медицинской генетики ТНЦ СО РАМН (Томск, 2002, 2003); VI, VII научных конференциях «Генетика человека и патология» (Томск, 2002, 2004); IV Международном конгрессе молодых ученых «Науки о человеке» (Томск, 2003); V съезде Российского общества медицинских генетиков (Уфа, 2005).
1
126
55
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. Ферментативная система биотрансформации ксенобиотиков
1.1.1. Семейства ферментов I и II фазы метаболизма
В процессах метаболизма различных по химическому составу ксенобиотиков, в том числе лекарственных препаратов и ряда эндогенных субстратов, выделяют две фазы [Urs, 1997]. Цитохромы Р450, флавинсодержащие монооксигеназы, эстеразы, амидазы, альдегиддегидрогеназы и др. относят к ферментам I-й фазы биотрансформации, которые участвуют в реакциях окисления и восстановления, а также гидролиза молекул ксенобиотика [Gonzalez, 1993]. Ведущая роль в окислении многих ксенобиотиков, а также важнейших для жизнедеятельности эндогенных соединений, таких как стероидные гормоны, витамины, жирные и желчные кислоты, простагландины, лейкотриены, биогенные амины, ретиноиды и др. принадлежит цитохрому Р450 [Ляхович, Цырлов, 1981; Waxman, Azaroff, 1992]. В ходе ферментативных реакций I-й фазы биотрансформации (фаза активации) образуются водорастворимые соединения. В дальнейшем эти соединения могут подвергаться конъюгации с эндогенными соединениями, восстановлению или гидролизу с помощью ферментов II-й фазы (фаза детоксикации), а затем выведению из организма. Ко второй фазе метаболизма принадлежат ферменты конъюгации - глутатион S-трансферазы (GST), конъюгирующие главным образом электрофильные соединения с глутатионом, УДФ-глюкуронозилтрансферазы (UDPGT), катализирующие реакции конъюгации молекул ксенобиотика или его метаболита с глюкуроновой кислотой [Morgenstern, DePierre, 1985], N-ацетил- (NAT), сульфо- (ST) -трансферазы, эпоксидгидролазы (EH), гидролизующие эпоксиды и др. [Sipes, Gandolfi, 1986].
В реакции II-й фазы метаболизма ксенобиотики могут вступать не только после метаболизма в реакциях I-й фазы, но и напрямую, а впоследствии подвергаться или не подвергаться окислению ферментами цитохрома Р450 [Saito et al., 1986], а результатом метаболизма может быть как уменьшение, так и усиление токсичных свойств субстрата. На рис. 1 представлены возможные комбинации взаимодействия двух фаз биотрансформации.
Рис.1. Изменение токсичных свойств ксенобиотиков в ходе реакциий I-й и II-й фаз биотрансформации.
Наиболее благоприятным исходом из них будет вариант, когда изначально токсичные свойства ксенобиотика снижаются под воздействием ферментов I и II фазы, а высокая активность различных цитохромов Р450 в сочетании с низкой активностью ферментов II-й фазы биотрансформации является наиболее неблагоприятной и приводит к увеличению риска развития некоторых заболеваний [Guengerich, 1988].
1.1.2. Свойства ферментов метаболизма ксенобиотиков
Цитохром Р450 является уникальным по своим свойствам гемопротеидом, обеспечивающим внедрение активированного кислорода непосредственно в молекулу субстрата. В общей сложности известно о 107 генах цитохромов Р450 в геноме человека, из них 59 индивидуальных цитохромов Р450 и 48 псевдогенов [Ingelman-Sundberg, 2004]. На сегодняшний день для большинства цитохромов установлена функциональная значимость. Цитохромы Р450 семейств 1-3 ответственны в большинстве случаев (70-80% из всех ферментов I-й фазы биотрансформации) за метаболизм используемых в клинической практике лекарственных препаратов [Ingelman-Sundberg, 2004; Evans, Relling, 1999; Bertz, Granneman, 1997]. Члены семейства CYP1, 2, 3, 4 - ответственны за метаболизм чужеродных соединений, а CYP11, CYP17, CYP19, CYP21 вовлечены в метаболизм стероидов и желчных кислот [Ioannides, Lewis, 2004; Lewis et al., 2004; Rifkind et al., 1995]. Часть цитохромов Р450 окисляют жирорастворимые витамины, некоторые вовлечены в метаболизм жирных кислот и эйкозаноидов.
Для многих цитохромов Р450 описаны высокоспецифичные субстраты. Однако одной из особенностей как цитохрома Р450, так и его индивидуальных форм является способность к метаболизму большого спектра субстратов. Поэтому изоформы цитохрома Р450 перекрываются в своей субстратной специфичности, и даже высокоспецифичные субстраты могут подвергаться метаболизму многими из них [Райс, Гуляева, 2003]. Интересно, что наряду с селективными субстратами существуют и такие, в метаболизме которых участвуют многие формы цитохрома Р450. Классическим примером такого субстрата является лекарственное средство антипирин, который метаболизируют CYP1A1, 2C8, 2C9, 2C18, 2B6, 3A4, 2D6, 2A6, 2C19 и 2Е1 [Engel et al., 1996].
Глутатион S-трансферазы - мультигенное семейство соответствующих ферментов, которое участвует в метаболизме большого числа электрофильных соединений путем их конъюгации с глутатионом, а также в биотрансформации некоторых эндогенных соединений (гормонов, липидов, простагландинов, лейкотриенов) [Morgenstern, DePierre, 1985; Кулинский, 1999; Hayes, Strange, 1999]. К настоящему времени известно, что у млекопитающих различают 6 подклассов глутатион S-трансфераз: 5 семейств цитоплазматической (альфа (б), мю (м), тэта (и), пи (р) и зета (Z)) и одно семейство микросомальной GST [Eaton, Bammler, 1999] . Синтез глутатионовых S-трансфераз контролируется различными генами, в которых выявлены полиморфизмы, оказывающие существенное влияние на их функции. Известно, что функциональная GST является димером [Beckett, Hayes, 1993].
Цитохром Р450 первоначально был обнаружен в печени, а затем и в других органах. Изучение внепеченочной экспрессии позволило сказать о тканеспецифичности цитохромов Р450. Тканеспецифичная экспрессия различных изоформ цитохрома Р450 определяет особенности протекающих монооксигеназных реакций и отражает адаптацию этой универсальной ферментной системы к структурно-функциональной организации той или иной системы организма. Так, высокая экспрессия цитохрома Р450 в гепатоцитах обеспечивает наиболее активное участие этого органа в биотрансформации ксенобиотиков. В печени ферменты метаболизма ксенобиотиков представлены максимально, а затем по убыванию следуют почки, легкие, кишечник, головной мозг и другие органы. В надпочечниках и половых железах в основном экспрессированы изоформы, участвующие в биосинтезе стероидных гормонов, в почках - изоформы, участвующие в биотрансформации ксенобиотиков и витамина Д и т.д. [Ingelman-Sundberg et al., 1995; Haehner et al., 1996].
На протяжении дыхательного тракта экспрессируются как цитохромы P450, так и ферменты второй фазы биотрансформации. Так в различных сегментах легких обнаружены ферменты семейств CYP1, 2, 3 и 4 [Wheeler, Guenthner, 1991; Raunio et al., 1995]. Из ферментов второй фазы наиболее представлены по всей протяженности респираторного тракта NAT1, NAT2, а также GSTм1, GSTм3 и GSTр1. Необходимо отметить, что глутатионовые S-трансферазы класса составляют более чем 90% от общей GST-активности в эпителиальных клетках легких человека [Frayer et al., 1986] .
Таким образом, знания об экспрессии генов ферментов метаболизма в различных органах и тканях, а также выявление их субстратной специфичности создают возможность объяснения тканеспецифичного метаболизма ксенобиотиков [Ravindranath, 1998]. Однако для этого необходимо изучение специфичного взаимодействия ферментов I-й и II-й фазы в метаболизме различных по химическому составу эндогенных и экзогенных ксенобиотиков, в том числе и лекарственных препаратов, определение их активности и генотипирования полиморфных генов [Pelkonen, Raunio, 1997; Nebert et al., 2003].
Одним из важных свойств системы цитохрома Р450 является индукция - активация транскрипции гена в присутствии субстрата [Ляхович, Цырлов; 1981]. Ранее предполагалось, что ксенобиотики сами являются факторами регуляции собственного метаболизма, однако впоследствии были показаны генетические механизмы процесса индукции [Poland et al., 1973]. Cпособность к индукции характерна для многих генов ферментов метаболизма ксенобиотиков семейств цитохрома Р450 [Honkakoski, Negishi, 2000] и имеет для организма приспособительное значение к меняющимся условиям химического окружения [Denison, Whitlock, 1995], в некоторых случаях достаточно довольно низких концентраций ксенобиотиков-индукторов, чтобы вызвать сильный ответ [Whitlock, Gelboin, 1974; Surry et al., 2000].
Некоторые ксенобиотики оказывают противоположный индукции эффект - ингибируют активность цитохромов Р450, что происходит вследствие образования реактивного метаболита, который ковалентно фиксируется в активном центре фермента. Показано ингибирование активности ферментов некоторыми лекарствами, например, изониазидом [Wen et al., 2002]. В случае, когда несколько ксенобиотиков метаболизируются одним и тем же ферментом семейства цитохрома Р450, они являются конкурентными ингибиторами друг для друга.
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков
Молекулярные механизмы полиморфизма генов ферментов метаболизма ксенобиотиков обусловлены следующим:
a) Нуклеотидные различия в кодирующем регионе гена приводят к замене аминокислоты и изменению в деятельности фермента или связывания субстрата (например, CYP2D6).
б) Делеции в кодирующем регионе приводят к отсутствию фермента или недостаточному синтезу белка (например, CYP2A6, CYP2D6 и GSTM1).
в) Полиморфизмы в некодирующей области затрагивают элементы транскрипционного контроля, вовлеченные в экспрессию и индукцию фермента (например, CYP1A1).
г) Изменения в сигнале полиаденилирования изменяет количество фермента (например, NAT1).
д) Генная амплификация повышает количество фермента (например, CYP2D6).
е) Сложные взаимодействия полиморфных генов и/или их ферментативных продуктов (например, более высокая активность CYP1A1 и 1A2 у лиц с GSTM1-дефицитом, вероятно из-за большего бионакопления компонентов индукции) [Bartsch et al., 2000].
С феноменом генетического полиморфизма ферментов, участвующих в биотрансформации ксенобиотиков впервые столкнулись фармакологи, и это явление обусловливает значительные межиндивидуальные различия в метаболизме - до 104 [Guengerich, 2003]. По причине существования многочисленных данных с использованием различных обозначений аллелей генов цитохромов Р450 в настоящее время выработана единая классификация, рекомендованная к применению для исследователей [Nelson et al., 1996].
У человека подкласс GSTм кодируется генами, локализованными на хромосоме 1 в области 1р13.3 и включает пять тандемно расположенных генов: GSTM1, GSTM2, GSTM3, GSTM4 и GSTM5 [Афанасьева, Спицин, 1990]. Для гена GSTM1 установлены две мутации: точковая замена, не имеющая функциональных проявлений [De Long et al., 1988], и протяженная делеция гена (10 т.п.н.), которая возникла в результате неравного кроссинговера между двумя гомологичными последовательностями, фланкирующими ген GSTM1, проявляющаяся отсутствием белка [Seidegard, 1988]. GSTM1*A и GSTM1*B кодируют GSTM1A и GSTM1B ферменты, которые функционально идентичны и различаются только по одной аминокислоте. GSTM1A содержит лизин в позиции 172, а GSTM1B - аспарагинин в этом же положении [Hatagima, Strange, 2000].
Ген GSTT1 картирован на хромосоме 22 (локус 22q11.2). Его полиморфизм обусловлен наличием двух аллелей: функционально активного GSTT1*1 и неактивного, так называемого «нулевого» (GSTT1*0). Аллель GSTT1*0 соответствует частичной или полной делеции, приводящей к снижению активности белка [Pemble et al., 1994].
Ген GSTP1 локализован на хромосоме 11 (11q13) и преимущественно экспрессируется в альвеолярных клетках, альвеолярных макрофагах, бронхиолах и плаценте. Для гена GSTP1 описаны две точковые мутации: замена аденина на гуанин в 313 положении первичной последовательности GSTP1, проявляющейся заменой изолейцина 105 на валин (Ile105Val) в 5 экзоне, и замена С341Т, проявляющейся заменой аланина 114 на валин (Ala114Val) в 6 экзоне [Board et al., 1989]. При мутации 105Val в 7 раз увеличивается каталитическая активность фермента по отношению к полициклическим ароматическим соединениям, но в 3 раза снижена активность по отношению к 1-хлор-2,4-динитробензену [Watson et al., 1998].
К настоящему моменту описаны девять аллелей гена CYP2C19, два активных аллеля CYP2C19*1A (wt1) и CYP2C19*1B (wt2) и семь дефектных аллелей CYP2C19*2A (m1A), 2C19*2B (m1B), 2C19*3 (m2), 2C19*4 (m3), 2C19*5A (m4 или TRP433), 2C19*5B, и 2C19*6 (m5) [Romkes et al., 1991; Richardson et al., 1995; Ibenau et al., 1998]. Основной генетический дефект, найденный у «медленных» метаболизеров (S)-мефенитоина - точечная замена G на A в пятом экзоне в положении 681 гена CYP2C19 (CYP2C19*2), приводящая к аберрантному сайту сплайсинга. Образующаяся мРНК не содержит первые 40 оснований пятого экзона, что нарушает рамку считывания, и приводит к образованию стоп-кодона. В печени индивидуумов, гомозиготных по этому дефекту, обнаруживается лишь аберрантно сплайсированная РНК. Таким образом, сплайсинг проходит исключительно с использованием сайта, возникшего в результате мутации [Крынецкий, 1996]. Этот полиморфизм является важным в отношении метаболизма лекарственных препаратов, связанный с нарушением способности цитохрома Р450 метаболизировать антиэпилептический препарат (S)-мефенитоин, а также омепразол, прогуанил, некоторые барбитураты и др. Кроме того показана еще одна точечная замена G>A в положении 636 в четвертом экзоне гена CYP2C19 (CYP2C19*3), приводящая к продукции укороченного белка [Ibenau et al., 1999; Xie et al., 1999; Yang et al., 2004; Schwab et al., 2004].
Ген CYP2E1 локализован на хромосоме 10q24.3-qter и состоит из 11413 п.н. и содержит 9 экзонов, кодирующих продукт из 493 аминокислот [Kolble, 1993]. Для гена CYP2E1 (табл. 1) наиболее часто рассматриваются тесно сцепленные полиморфизмы по рестрикционным эндонуклеазам PstI/RsaI (мутантный аллель CYP2E1*5B), локализованные в 5-фланкируещем регионе гена [Hayashi et al., 1991; Watanabe et al., 1994;], при которых мутантный аллель способствует повышенной транскрипционной и ферментативной активности, а также DraI полиморфизм (мутантный аллель CYP2E1*6), расположенный в 6 интроне [Uematsu et al., 1991], для редкого аллеля которого показаны мутации, влияющие на экспрессию гена и каталитическую активность соответствующего белка [Hu et al., 1997].
Таблица 1
Номенклатура аллелей CYP2E1 гена (составлена по данным сайта http://www/imm.ki.se/CYPalleles)
|
Аллель
|
Белок
|
Однонуклеотидные замены
|
Эндонуклеаза
рестрикции
|
|
CYP2E1*1A
CYP2E1*1B
CYP2E1*1C
CYP2E1*1D
CYP2E1*2
CYP2E1*3
CYP2E1*4
CYP2E1*5A
CYP2E1*5B
CYP2E1*6
CYP2E1*7A
CYP2E1*7B
CYP2E1*7C
|
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.2
CYP2E1.3
CYP2E1.4
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.1
CYP2E1.1
|
-
9893C>G
6 тандемов
8 тандемов
1132G>A
10023G >A
4768G>A
-1293G>C
-1053C>T
7632T>A
-1293G>C
-1053C>T
7632T>A
-333T>A
-71G>T;-333T>A
-333T>A;-352A>G
|
TaqI
DraI, XbaI
PstI
RsaI
DraI
PstI
RsaI
DraI
|
|
|
Таким образом, качественный состав и количественные соотношения изоформ ферментов метаболизма ксенобиотиков могут меняться под воздействием непосредственно самих же ксенобиотиков на организм. В зависимости от структуры исходного субстрата может происходить либо его биоактивация и увеличение токсичности, либо обезвреживание ксенобиотика. В результате ингибирования, индукции и генетического полиморфизма ферментов метаболизма ксенобиотиков может возникать дефицит или очень высокая активность отдельных изоформ и, как следствие, иметь место нежелательные для организма последствия: дисбаланс процессов биотрансформации ксенобиотиков, приводящий к развитию патологического состояния организма, а также снижение терапевтической активности лекарственных препаратов и всевозможные проявления побочных эффектов от их терапевтического действия.
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)
Развитие подавляющего большинства мультифакториальных заболеваний (МФЗ) происходит при сочетанном влиянии разнообразных факторов. МФЗ представляют группу болезней, развитие которых определяется неблагоприятным сочетанием полиморфных вариантов генов, контролирующих возникновение и патогенез заболевания в совокупности с определенными воздействиями факторов среды. Для МФЗ характерен ряд особенностей, которые с одной стороны, позволяют рассматривать эту группу патологий как модель изучения комплекса специфичных генов и экзогенных факторов, которые, взаимодействуя между собой, формируют норму реакции устойчивости человека к среде обитания [Гинтер, 2001; Бочков и др., 1984], а с другой - значительно осложняют обобщение данных для установления истинных генов подверженности сложнонаследуемых заболеваний. Например, существенное увеличение распространенности многих полигенных заболеваний (астма и связанные с атопией патологические состояния, туберкулез и др.) нельзя объяснить изменениями в генетической структуре за прошедшие десятилетия. Вероятно, что существующие генетические факторы, взаимодействующие с изменившимися условиями окружающей среды (снижение числа инфекционных болезней, повсеместная иммунизация, особенности питания и др.) вызывают повышенную восприимчивость популяции к вышеперечисленным заболеваниям [Organov, Maslennikova, 1999; Sengler et al., 2002]. Это пример того, как воздействие факторов внешней среды может значительно изменить положение порога подверженности к МФЗ [Фогель, Мотульски, 1990]. Кроме того, необходимо учитывать наличие сочетаний индивидуальных для каждой отдельно взятой популяции аллельных вариантов генов предрасположенности к заболеванию, что отражают различающиеся результаты анализа ассоциаций с МФЗ. Тем не менее, установление генов предрасположенности и изучение их совместной работы, выявление особенностей взаимодействия с факторами негенетической природы в развитии МФЗ, для которых пожизненный риск оценивается в западных популяциях порядка 60%, вызывает естественное стремление исследователей к пониманию механизмов нормальной и патологической реализации генетической информации [Пузырев, 2003].
Бронхиальная астма (БА) - широко распространенное хроническое заболевание дыхательных путей, поражающее в России от 3 до 12 %, а в некоторых промышленно-развитых регионах эти цифры достигают 30 % [Научно-практическая программа «Бронхиальная астма у детей: диагностика, лечение и профилактика», 2004], а также порядка 5 миллионов детей и 10 миллионов взрослых в Западных странах [Schwartz et al., 2004]. Кроме того, отмечено повышение уровня числа больных, требующих госпитализации, а также рост показателей смертности от астмы. Несмотря на явные успехи в области выявления и лечения данной патологии, распространенность и тяжесть заболевания значительно увеличиваются за последние десятилетия.
Драматическое увеличение распространенности и тяжести астмы на протяжении последних 20 лет, особенно в ряде промышленных регионов предполагает, что ухудшающиеся условия окружающей среды играют далеко не последнюю роль в развитии и прогрессировании данной патологии. Отмеченное влияние ряда факторов, например, возраст, раса, социально-экономический статус, хотя и предполагает их участие в риске развития БА, но все-таки особую роль в этиологии и патогенезе заболевания отводят влиянию аллергенов, курению, профессиональным химическим агентам, загрязнителям воздуха, вирусам и иммунизации против конкретного инфекционного заболевания.
В 90% случаев выявления больных бронхиальной астмой присутствует атопия как генетически детерминированная способность организма к выработке повышенного IgE в ответ на воздействие аллергенов окружающей среды. Через IgE-опосредованный механизм целый ряд клеточных элементов: гистиоциты (тучные клетки), макрофаги, лимфоциты, эпителиальные и эндотелиальные клетки независимо друг от друга или совместно принимают участие в воспалении дыхательных путей, тем самым, осуществляя иммунный ответ организма на внедрение антигена. Воспалительная природа заболевания проявляется в морфологи-ческих изменениях стенки бронхов - дисфункции ресничек мерцатель-ного эпителия, деструкции эпителиальных клеток, инфильтрации клеточными элементами, дезорганизации основного вещества, гиперпла-зии и гипертрофии слизистых и бокаловидных клеток. Длительное течение воспалительного процесса приводит к необратимым морфофункциональным изменениям в виде резкого утолщения базальной мембраны, нарушения микроциркуляции и склероза стенки бронха. Ключевой особенностью астмы является состояние бронхиальной гиперреактивности, свидетельствующее о повышенном бронхоконстрикторном ответе на различные физико-химические факторы, включая не только аллергены, к которым сенсибилизирован индивид, но и специфические стимулы, например, холодный воздух и физическая нагрузка [Гриппи, 1997]. Формирование гиперреактивности связывают с перестройкой дыхательных путей, обусловленной хроническим аллергическим воспалением, сопровождающейся сужением стенок, повышением васкуляризации, гипертрофией и гиперплазией гладкой мускулатуры бронхов. В результате чего происходят изменения нейрональной регуляции и повышение сократимости гладких мышц дыхательных путей. Как и атопия, неспецифическая гиперреактивность являются одними из универсальных признаков астмы: чем выше эти показатели, тем тяжелее протекает процесс. Однако распространенность бронхиальной гиперреактивности значительно выше, чем БА.
На протяжении более чем столетней истории вопроса наследования БА обсуждались различные модели - моногенные (аутосомно-рецессивная и доминантная), полигенные, сцепленные с половыми хромосомами [Huang, Marsh, 1993; Чучалин, 1999]. В ходе исследований стало понятно, что сложные механизмы наследования астмы (как и атопии) не могут быть объяснены простой (моногенной) моделью, а проявление клинических симптомов болезни является результатом действия средовых факторов на предрасположенных индивидуумов [Anderson, Cookson, 1999].
Для оценки генетического вклада в этиологию и патогенез БА были предприняты массовые близнецовые исследования в Швеции, Финляндии, Норвегии, Дании, США и Австралии, показавшие оценку наследуемости от 15 до 75 %, что подтвердило предположение о генетической основе заболевания [Edfors-Lubs, 1971; Duffy et al., 1990; Nieminen et al., 1991; Lichtenstein, Svatengren, 1997; Laitinen et al., 1998; Skadhauge et al., 1999].
Большинство современных исследователей рассматривают генетическую компоненту заболевания БА как полигенную систему с аддитивным эффектом отдельных генов, каждый из которых в отдельности не способен, либо крайне редко способен вызвать болезнь [Holgate et al., 1995; LeSouef, 1997]. Таким образом, БА, как и многие распространенные заболевания в популяции, рассматривается как полигенная болезнь с наследственной предрасположенностью или как мультифакториальная болезнь. Для астмы, как и для остальных заболеваний этой группы характерны следующие признаки, сформулированные в 1969 году C.O. Carter: а) относительно высокая частота болезни в популяции и в то же время значительная семейная подверженность; б) наличие патогенетических и ассоциированных маркеров предрасположения; в) хроническое течение и наличие форм, образующих непрерывный ряд проявлений от ярко выраженных до субклинических; г) более раннее начало заболевания и утяжеление клинических симптомов в нисходящих поколениях семьи; д) относительно невысокая (в сравнении с моногенными болезнями) конкордантность по заболеванию у монозиготных близнецов; е) повышенный риск повторного рождения предрасположенных к болезни детей с появлением каждого последующего пораженного болезнью ребенка; ж) однотипность проявлений болезни у больного ребенка и ближайших родственников, что отражает коэффициент наследуемости, превышающий 50-60%; з) несоответствие закономерностей наследования болезни простым менделевским моделям (доминантное, рецессивное и др.) [Carter, 1996].
Таким образом, достижения в области исследования важнейших механизмов развития астмы позволили выработать концепцию патогенеза БА, согласно которой в основе клинических проявлений болезни лежит атопия, которая, как известно, характеризуется значительным вкладом наследственных факторов. А тщательная оценка эпидемиологии астмы позволяет определить экологические факторы риска БА.
Существует мнение, что контакт с бактериальными и вирусными инфекциями в раннем детстве является защитным фактором к дальнейшему развитию атопического заболевания в более поздней жизни. Еще в 1989 г. Strachan заметил, что распространение сенной лихорадки среди взрослых находится в обратной связи с размером семьи и даже более того - с наличием братьев и сестер [Strachan, 1989]. В связи с чем была выдвинута гипотеза, предполагающая, что инфекции в раннем детстве оказывают защитный эффект против развития в дальнейшем аллергии, получившая в последующем название «гигиенической гипотезы». С момента этого наблюдения выполнено много исследований, посвященных изучению связи между инфекциями, перенесенными в раннем периоде жизни и последующим развитием атопических заболеваний [Noguchi et al., 1998; Heinzmann et al., 2000]. Воссоединение Германии в 1990 г. способствовало уникальной возможности изучать распространение астмы в генетически схожих популяциях, но в условиях воздействия различных факторов окружающей среды, в том числе инфекции. Несмотря на то, что дети из бывшей Восточной Германии чаще болели инфекциями верхних дыхательных путей по сравнению с Западной Германией, развитие астмы в этих двух популяциях имело обратную зависимость [von Mutius et al., 1994]. В контексте «гигиенической гипотезы» интересны исследования, в которых показано, что дети, выросшие на ферме в тесном контакте с сельскохозяйственными и домашними животными, реже имели сенсибилизацию к пыльцевым и другим атопическим аллергенам в сравнении с детьми, выросшими в другой среде. Эти результаты указывают на то, что окружающая среда, характеризующаяся высоким содержанием бактерий, может действительно защищать от развития аллергии, по крайней мере, если субъект в раннем возрасте находился в такой среде. Основным механизмом данного защитного действия является способность эндотоксинов, содержащихся в бактериально загрязненной домашней пыли, стимулировать Th1-иммунитет [Ильина, 2001].
На сегодняшний день показано сцепление БА и ее клинических проявлений со многими хромосомными регионами. Изучение кандидатных генов показало сцепление с атопией и бронхиальной гиперреактивностью по многим локусам, но наибольшая важность показана для регионов 5q, 6p, 11q, 12q, 13q, 14q, 16p, и именно для этих локусов получены воспроизводимые результаты (табл. 2).
Таблица 2
Гены-кандидаты бронхиальной астмы и связанных с ней клинических фенотипов
|
Локализация
|
Молекула
|
SNP/мутация
|
Связанный
фенотип
|
Литературный
источник
|
|
1
|
2
|
3
|
4
|
5
|
|
1р32
|
Гистамин-N-метил-трансфераза
|
С314Т(Thr105Ile)
|
Астма
|
Yan et al., 2000
|
|
1p13.3
|
GSTM1
|
del
|
Астма
Атопия
|
Ляхович и др., 2000; Вавилин и др., 2002; Zhang et al., 2004
|
|
2q14
|
IL1A
|
G/T at +4845
|
Астма
|
Adjers et al., 2004
|
|
3p21
|
СCR5
|
CC5-?32
|
Астма
|
Hall et al., 1999
|
|
5q22-q24
|
СYP1A1
|
Аллель Val
|
Астма
|
Вавилин и др., 2002
|
|
5q31-34
|
IL-4
|
C-590T
|
Астма/
Общий IgE/
Специфический IgE/
Атопический дерматит
|
Rosenwasser et al., 1995; Walley et al., 1996; Noguchi et al., 1998; Kawashima et al., 1998; Burchard et al., 1999
|
|
|
|
С+33Т
|
Астма/ Общий IgE
|
Dizier et al., 1999; Nagarkatti et al., 2004
|
|
5q31
|
IL-13
|
C-1055T; (C-1112T); A-1512C
C1923T; G2525A; C2580A; C2749T; G427557A; +79Т>С; Arg110Gln
|
Атопическая астма/ Общий IgE
|
Van der Pouw Kraan et al., 1999; Graveset al., 2000; Liu et al., 2000; Heinzmann et al., 2000; Eder et al., 2004
|
|
|
В2-AR
|
G-1023A; C-709A; G-654A; C-468G; C-406T; T-367C; T-47C; T-20C; G46A; C79G
G252A; C491T; C523A; G-654A; G46A; Gly16Arg
|
Лекарственный ответ (изучение гаплотипа)
FEV1
Астма
FEV1
Гормоно-зависимая астма
|
Reihsaus et al., 1993; Drysdale et al., 2000; Summerhill et al., 2000
|
|
5q31.1
|
CSF2
|
117Thr
|
Астма
|
Hoffjan et al., 2004
|
|
5q31.1
|
СD14
|
-159C>T
|
Общий IgE
|
Baldini et al., 1999; Gao et al., 1999
|
|
5q35
|
Страницы: [1] | 2 | 3 | 4 | 5 | 6 |
|