Главная   Заказать уникальную работу Теорема Ферма. Бесконечный спуск для нечетных показателей n | статья


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней
 




Теорема Ферма. Бесконечный спуск для нечетных показателей n - статья


Категория: Статьи
Рубрика: Математика
Размер файла: 40 Kb
Количество загрузок:
167
Количество просмотров:
931
Описание работы: статья на тему Теорема Ферма. Бесконечный спуск для нечетных показателей n
Подробнее о работе: Читать или Скачать
ВНИМАНИЕ: Администрация сайта не рекомендует использовать бесплатные Статьи для сдачи преподавателю, чтобы заказать уникальные Статьи, перейдите по ссылке Заказать Статьи недорого
Смотреть
Скачать
Заказать



Терема Ферма. Бесконечный спуск для нечётных показателей n.

Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4.

Ферма (потом Эйлер) доказывали эту теорему для частного случая n = 4 способом бесконечного спуска с помощью формул древних индусов: x= a- b, y=2ab, z= a+ b.

Другие формулы: x = + b, y = + a, z = + a + b (1).

В (1) a и b любые взаимно простые положительные целые числа, одно из них - чётное, другое - нечётное. Пусть a - чётное, b - нечётное: a=2c, b=d, откуда =2cd.

После подстановки значений a и b в (1) получим:

X = d(2c+d); Y= 2c(c+d); Z= 2c(c+d)+ d (2),

где c и d любые целые положительные числа; c,d и их суммы взаимно просты;

X,Y,Z - взаимно простые тройки решений уравнения Пифагора. Если определены и целы c и d, то определены и целы все три числа X,Y,Z.

Предположим, что уравнение Ферма x+ y= z имеет тройку целых положительных решений x,y,z при нечётном целом положительном значении показателя n, n>2. Запишем это уравнение следующим образом:

(x)+ (y)= (z) (4).

Так как рассматривается возможность существования целых решений уравнений Ферма и (4) , то должно выполняться следующее условие:

x= X; y= Y; z= Z; где X,Y,Z из (2) (5).

Чтобы числа x,y,z были целыми, из всех трёх чисел X,Y,Z должны извлекаться целочисленные корни степени n (n - нечётное положительное целое число):

x == (); y == (); z =.

Для упрощения достаточно рассмотреть два целых числа и ( n - нечётное ):

= = и = = .

Подкоренные выражения содержат сомножители не имеющие общих делителей, кроме 1, поэтому каждый сомножитель должен являться целым числом в степени n:

d = g; 2 c = h, следовательно, = ; = .

Так как x, - целые, x - по условию, а - из-за нечётн. n, то g+ h= k, где k - целое.

Тройка решений g,h,k удовлетворяет уравнению Ферма, но все три числа меньше числа x первой тройки решений, потому что наибольшее число k из g,h,k меньше , так как =g, а <x, так как x=(). Число k заведомо меньше числа z.

Повторим те же рассуждения для второй тройки решений g,h,k, начиная с (4):

(g)+ (h)= (k); g ==(); h ==(); k =.

= = и = = .

d = p; 2 c = q, следовательно, = ; = .

p+ q= r, где r - целое число. Все три числа p,q,r меньше числа из второй тройки решений и r<k. Таким же образом получается 4-я тройка решений, 5-я и т.д. до .

При данных конечных целых положительных числах x,y,z не может существовать бес-конечной последовательности уменьшающихся целых положительных троек решений. Ряд натуральных чисел конечен. Отсюда целых положительных троек решений для целых положительных нечётных (и всех простых) значений показателя n (n>2) не существует.

Для чётных n=2m не кратных 4: (x)+(y)=(z), m - нечётное. Если нет целых троек решений для показателя m, то их нет и для 2m (это показал Эйлер). Для n=4 и n=4k (k=1,2,3…) уже доказано, что целых положительных троек решений не существует.

А. Ф. Горбатов














 
Показывать только:
Портфель:
Выбранных работ  


Рубрики по алфавиту:
АБВГДЕЖЗ
ИЙКЛМНОП
РСТУФХЦЧ
ШЩЪЫЬЭЮЯ

 

 

Ключевые слова страницы: Теорема Ферма. Бесконечный спуск для нечетных показателей n | статья

СтудентБанк.ру © 2022 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.