Главная   Заказать уникальную работу Проверка гипотезы о законе распределения случайной величины по критерию Пирсона | контрольная работа


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней
 




Проверка гипотезы о законе распределения случайной величины по критерию Пирсона - контрольная работа


Категория: Контрольные работы
Рубрика: Математика
Размер файла: 92 Kb
Количество загрузок:
184
Количество просмотров:
1124
Описание работы: контрольная работа на тему Проверка гипотезы о законе распределения случайной величины по критерию Пирсона
Подробнее о работе: Читать или Скачать
ВНИМАНИЕ: Администрация сайта не рекомендует использовать бесплатные Контрольные работы для сдачи преподавателю, чтобы заказать уникальные Контрольные работы, перейдите по ссылке Заказать Контрольные работы недорого
Смотреть
Скачать
Заказать



7

1. Случайная выборка объема

Под случайной выборкой объема n понимают совокупность случайных величин , не зависимых между собой. Случайная выборка есть математическая модель проводимых в одинаковых условиях независимых измерений.

Таблица 1

42,7;

37,6;

45,1;

55,4;

50,7;

30,7;

31,9;

43,8;

47,5;

42,1;

57,7;

21,3;

45,5;

45,3;

46,2;

50,9;

33,2;

40,4;

40,0;

59,6;

46,0;

44,0;

37,0;

44,7;

64,6;

58,9;

31,3;

59,2;

45,5;

53,3;

43,6;

37,5;

33,0;

42,6;

39,6;

51,5;

47,4;

48,6;

33,8;

29,2;

33,7;

48,5;

44,4;

37,6;

45,1;

36,0;

26,4;

38,0;

49,7;

52,1;

42,7;

49,0;

31,9;

52,2;

60,6;

44,6;

43,9;

59,4;

53,7;

45,9.

2. Упорядоченная выборка

Упорядоченной статистической совокупностью будем называть случайную выборку величины в которой расположены в порядке возрастания

Таблица 2

21,3;

26,4;

29,2;

30,7;

31,3;

31,9

31,9;

33,0;

33,2;

33,7;

33,8;

36,0;

37,0;

37,5

37,6;

37,6;

38,0;

39,6;

40,0;

40,4;

42,1;

42,6

42,7;

42,7;

43,6;

43,8;

43,9;

44,0;

44,4;

44,6

44,7;

45,1;

45,1;

45,3;

45,5;

45,5;

45,9;

46,0

46,2;

47,4;

47,5;

48,5;

48,6;

49,0;

49,7;

50,7

50,9;

51,5;

52,1;

52,2;

53,3;

53,7;

55,4;

57,7

58,9;

59,2;

59,4;

59,6;

60,6;

64,6.

.

Определим шаг или длину интервала, по формуле Стерджесса

, (1)

.

Таблица 3

[18; 25)

21,5

1

0,0167

0,0024

[25; 32)

28,5

6

0,1

0,0142

[32; 39)

35,5

10

0,1667

0,0238

[39; 46)

42,5

20

0,3333

0,0476

[46; 53)

49,5

13

0,2167

0,0309

[53; 60)

56,5

8

0,1333

0,0190

[60; 67)

63,5

2

0,0333

0,0048

60

1

где ,

,

,

- частота;

- относительная частота;

- плотности относительных частот.

Рис. 1. Гистограмма плотности относительных частот

По построенной гистограмме (рис.1) можно предположить, что данное распределение подчиняется нормальному закону. Для подтверждения выдвинутой гипотезы проведем оценку неизвестных параметров, для мат. Ожидания

, (2)

.

для несмещенной оценки дисперсии

, (3)

Функция плотности имеет вид

, (4)

где ,

.

Пользуясь приложением 3 в учебнике Вентцель Е.С. - "Теория вероятностей" - М.: Высшая школа, 1998., получим значения

(5)

(6)

. (7)

Полученные значения занесем в таблицу 4

Таблица 4

21.5

0.0025

28.5

0.0114

35.5

0.0291

42.5

0.0425

49.5

0.0351

56.5

0.0165

63.5

0.0044

3. Критерий согласия (Пирсона)

Найду соответствующие вероятности для каждого разряда

Из ТВ для нормальной случайной величины

(8)

Значения функции Лапласа, находим в приложении 2, учебника Вентцель Е.С., Овчаров Л.А., теория вероятностей и её инженерные приложения. Учеб. пособие для вузов. - 2-е изд., стер. - М.: Высш. шк., 2000.

Таблица 5

7

10

20

13

10

0,12567

0, 20289

0,29017

0,24263

0,15245

7,5402

12,1734

17,4102

14,5578

9,1470

-0,5402

-2,1734

2,5898

-1,5578

0,8530

0,2918

4,7237

6,7071

2,4267

0,7276

0,0387

0,3880

0,3852

0,1667

0,079

. (9)

- расчетное

Найдем число степеней свобод

(10)

Где k=5; s=3;

r=2

Для

Получили:

.

Гипотеза о нормальном распределении генеральной совокупности, из которой сформирована выборка, не противоречит экспериментальным данным.

4. Нахождение доверительного интервала

4.1 Оценка математического ожидания

4.2 Оценка дисперсии .

4.3 Среднеквадратичное отклонение оценки

, (11)

.

4.4 По функции Лапласа, определим t

;

(12)

где

.

4.5 Точность оценки

(13)

4.6 Доверительный интервал

При достаточно большом числе выборок, из них имеет такие доверительные интервалы. А в 5% оценив параметры математического может выходить за пределы доверительного интервала.














 
Показывать только:
Портфель:
Выбранных работ  


Рубрики по алфавиту:
АБВГДЕЖЗ
ИЙКЛМНОП
РСТУФХЦЧ
ШЩЪЫЬЭЮЯ

 

 

Ключевые слова страницы: Проверка гипотезы о законе распределения случайной величины по критерию Пирсона | контрольная работа

СтудентБанк.ру © 2022 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.