Главная   Добавить в избранное Метод наближеного обчислення коренів. Програма | курсовая работа


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней
 




Метод наближеного обчислення коренів. Програма - курсовая работа


Категория: Курсовые работы
Рубрика: Математика
Размер файла: 50 Kb
Количество загрузок:
41
Количество просмотров:
730
Описание работы: курсовая работа на тему Метод наближеного обчислення коренів. Програма
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



6

Міністерство освіти і науки України

ФАКУЛЬТЕТ ІНФОРМАТИКИ

КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ

Реєстраційний №________

Дата ___________________

КУРСОВА РОБОТА

Тема:

Метод наближеного обчислення коренів. Програма.

Рекомендована до захисту

“____” __________ 2008р.

Робота захищена

“____” __________ 2008р.

з оцінкою

_____________________

Підписи членів комісії

Зміст

Вступ

Теоретична частина

1. Межі дійсних коренів

2. Число дійсних коренів

Практична частина

1. Опис програми

2. Текст програми

Контрольні приклади

Висновок

Література

Вступ

Не існує методу для пошуку точних значень многочленів з числовими коефіцієнтами. Адже, деякі проблеми механіки, фізики і інших галузей техніки зводиться до питання про корені многочленів, іноді досить високим степенем. Ця обставина зявилася приводом для численних досліджень, що мали метою навчитися робити ті чи інші висловлення про корені многочлена з числовими коефіцієнтами, не знаючи цих коренів. Для многочленів з дійсними коефіцієнтами розроблялися методи визначення числа їхніх дійсних коренів, шукалися границі, між якими ці корені можуть знаходитися. Нарешті, багато досліджень було присвячено методам наближеного обчислення коренів: у технічних додатках звичайно досить знати лише наближені значення коренів з деякою заздалегідь точністю і якби, наприклад, корені многочлена записувалися в раидикалах, ці радикали все рівно були б замінені їх наближеними значеннями.

Теоретична частина

1. Межі дійсних коренів

Щоб знайти корені рівняння з достатнім степенем точності, треба знати, як ці корені розміщені на комплексній площині або на дійсній осі. Заважимо, що іноді навіть немає потреби знаходити числові значення коренів, а досить лише з`ясувати їх розміщення на площині (число дійсних, зокрема, додатних від`ємних коренів тощо). Наприклад, одна з важливих проблем механіки - теорія стійкості - потребує з`ясування умов, при яких усі корені даного алгебраїчного рівняння мають від`ємні дійсні частини.

Зробимо два зауваження щодо комплексних коренів многочленів.

Зауваження 1. Усі корені многочлена лежать у середині круга з центром у точці 0 і радіусом

(1)

Зауваження 2. Комплексні корені многочлена з дійсними коефіцієнтами розміщені симетрично відносно дійсної осі.

Переходячи тепер до розгляду дійсних коренів многочленів з дійсними коефіцієнтами, будемо знову позначати змінне буквою x, а не z.

З наведеного зауваження 1 дістаємо таке твердження:

Теорема. Усі дійсні корені рівняння міститься в інтервалі , де

, .

Справді, всі комплексні корені лежать у крузі , а тому, якщо серед них є дійсні корені, то вони повинні потрапити в зазначений інтервал.

Теорему 1 часто називають теоремою про межі коренів рівняння. Є чимало способів, які дають змогу з більшою точністю встановлювати межі дійних коренів алгебраїчних рівнянь. Розглянемо один з них, так званий спосіб Ньютона.

Зробимо деякі зауваження.

Число , визначене за теоремою 1, дає одночасно верхню межу додатних коренів многочлена і нижню межу його відємних коренів, бо вказує інтервал , в якому лежать усі дійсні корені, якщо вони існують. Один з шляхів уточнення, звуження меж, між якими слід шукати дійсні корені, полягає в тому, щоб окремо знаходити нижню і верхню межі додатних коренів та нижню і верхню межі відємних коренів даного многочлена, тобто такі чотири числа , що всі додатні корені многочлена лежать в інтервалі , а всі відємні - . Якщо многочлена моє корінь нуль, досить розглянути многочлена, утворений з даного ділення на x.

Завдання полегшується тим, що фактично досить знати спосіб знаходження лише одного з цих чотирьох чисел, наприклад - верхньої межі додатних коренів. Знаходження інших трьох меж дійсних коренів рівняння легко звести до знаходження верхньої межі додатних коренів деяких допоміжних рівнянь.

Так, зробивши в рівнянні заміну змінного , дістанемо рівняння , корені якого звязані з відповідними коренями заданого рівняння співвідношенням . Якщо - верхняя межа додатних коренів рівняння , тобто , то , звідки видно, щ за нижню додатних коренів рівняння можна взяти число : .

Аналогічно, заміна переводить рівняння в рівняння , корені якого звязані з відповідними коренями рівняння рівністю . Якщо - всі додатні корені рівняння , то - всі відємні корені рівняння . З нерівності видно, що , тобто верхня і нижня межі відємних коренів рівняння виражаються через межі додатних коренів рівняння : .

Отже досить мати правило для знаходження верхньої межі додатних коренів многочлена.

2. Число дійсних коренів

Знання числа і розміщення дійсних коренів многочленів є важливою передумовою застосування багатьох методів чисельного розвязування рівнянь. В окремих випадках деякі відомості про число дійсних коренів можна дістати за допомогою досить поверхневого аналізу. Іноді при знаходженні меж коренів виявляється, що многочлена не має додатних або відємних коренів. Однак для повної відповіді на питання про число дійсних коренів многочлена з дійсними коефіцієнтами (або навіть про число таких коренів на довільному, наперед заданому інтервалі дійсної осі) потрібні більш глибокі дослідження.

У багатьох випадках число дійсних коренів рівняння з дійсними коефіцієнтами можна визначити за простим правилом, яке дав Декарт. Перш ніж формулювати це правило, зробимо деякі зауваження.

Зауваження 1. Розглядатимемо кількість змін знаків у даній упорядкованій скінченій послідовності дійсних чисел розуміючи під цим кількість пар сусідніх чисел цієї послідовності, які мають протилежні знаки. Наприклад, у послідовності -1,-2,6,3,-1,4 є 3 зміни знаків, а в послідовності -1,-2,-6,-3,-1,-4 є 0 змін знаків. Якщо які-небудь з чисел дорівнюють нулю, то при підрахунку числа змін знаків їх до уваги не беруть. Зауважимо, що коли перше й останнє числа і даної послідовності мають однакові знаки, то кількість змін знаків у послідовності парна; якщо ж і мають протилежні знаки, то кількість змін знаків - непарна. Справді, члени послідовності, які безпосередньо йдуть за кожною зміною знаків, мають знак, протилежний знаку тих членів, які передували зміні знаків. Отже, якщо остання зміна знаків має непарний номер, то числа послідовності, що йдуть за нею (і зокрема, ) матимуть знак, протилежний до .

Зауваження 2. Припускатимемо, що розглядуваний многочлена не має кратних коренів, оскільки завжди можна відокремити кратні множники.

Правило Декарта. Число додатних коренів многочлена з дійсними коефіцієнтами

дорівнює числу змін знаків у послідовності його коефіцієнтів або на парне число менше.

Зауваження 1. Правило Декарта можна застосувати і для оцінки числа відємних коренів з дійсними коефіцієнтами. Для цього в рівнянні

треба зробити заміну змінного . Зрозуміло, що число відємних коренів даного рівняння дорівнює числу додатних коренів рівняння , яке можна оцінити за правилом Декарта.

Якщо дане рівняння повне, тобто жодний коефіцієнт не дорівнює нулю, то число відємних коренів можна визначити і не виконуючи заміни . Справді, в цьому випадку число змін збережень знаків у ряді коефіцієнтів многочлена дорівнює числу збережень знаків у ряді коефіцієнтів многочлена . Отже, число відємних коренів повного рівняння дорівнює числу збережень знаків у ряді його коефіцієнтів або на парне число менше.

Зауваження 2. Коли наперед відомо, що всі корені даного рівняння дійсні, то правило Декарта дає точну відповідь на питання про число дійсних коренів, а саме: число додатних коренів дорівнює числу змін знаків у ряді коефіцієнтів многочлена , а число відємних коренів - числу змін знаків у ряді коефіцієнтів многочлена .

Справді, нехай, як і вище, і - число додатних і відємних коренів даного многочлена , -го степеня; і - число змін знаків у ряді коефіцієнтів многочлена і многочлена відповідно. З умови, що всі корені дійсні, випливає: . Якби рівняння були повними, то мали б також . Якщо ж деякі з коефіцієнтів многочлена (а тому й многочлена ) перетворюється в нуль, то числа і можуть тільки зменшитися. Тому в загальному випадку , звідки , або . Але з правила Декарта знаємо, що . Тому насправді .

На жаль, у більшості випадків наперед невідомо, чи всі корені рівняння дійсні. У звязку з цим правило Декарта, хоч і зручне з точки зору простоти застосування, не дає повної відповіді на питання про число дійсних коренів рівнянь з дійсними коефіцієнтами та їх розподіл між додатною і відємною півосями.

Практична частина

1. Опис програми

Програма складається з двох файлів - polinom.pas і polinom.dat. У файлі polinom.dat записується степень многочлена та його коефіціенти.

Описаняя процедур та функцій:

procedure znach - шукає межі додатніх та віємних коренів;

function znachenie - знаходить значення многочлена в точці;

procedure delenie - відокремлює корені многочлена;

procedure korni - уточнює корені многочлена методом поділу відрізка навпіл;

2. Текст програми

Uses crt;

type ff=array[0..10] of real;

var f0,f1,f2,f3:ff;

prom,kpol:array[0..100] of real;

fil:text;

i,nf,k,iprom:integer;

n0,n1,n2,n3,b:real;

procedure znach(a100:ff ;var a1:ff); {ищет промижутки}

var i1:byte;

begin

if a100[0]<0 then

for i1:=0 to nf-1 do a100[i1]:=-1*a100[i1];

k:=0;

for i1:=0 to nf-1 do

if a100[i1]<0 then begin k:=i1;break end;

b:=0;

for i1:=0 to nf-1 do

if a100[i1]<0 then if b<abs(a100[i1]) then b:=abs(a100[i1]);

a1:=a100;

end;

procedure gran(k1:integer;b1,a5:real;var nk:real);{границы}

begin

if (k1<>0)and(b1<>0) then nk:=1+exp(1/k1*ln(b1/a5))

else nk:=0;

end;

function znachenie(a100:ff;xx:real):real; {значение в тч ХХ}

var y:real;

i100:integer;

begin

y:=a100[0];

for i100:=1 to nf-1 do

y:=y*xx+a100[i100];

znachenie:=y;

end;

procedure delenie(a,b:real);

const dx=0.1;

var z,z1,c:real;

begin

iprom:=0;

prom[0]:=a;

While b>a do begin

z:=znachenie(f0,a);

c:=a;

repeat

a:=a+dx;

z1:=znachenie(f0,a);

until (z*z1<0)or(b<a);

if z*z1<0 then begin iprom:=iprom+1;

prom[iprom-1]:=c;

prom[iprom]:=a;

end;

end;

end;

procedure korni(a8,b8:real);

const eps=0.0001;

var x0:real;

begin

x0:=(a8+b8)/2;

while abs(b8-a8)>eps do begin

if znachenie(f0,a8)*znachenie(f0,X0)<0 then begin b8:=x0;end;

if znachenie(f0,x0)*znachenie(f0,b8)<0 then begin a8:=x0;end;

x0:=(a8+b8)/2 end;

kpol[i]:=x0;

end;

begin clrscr;

assign(fil, `polinom.dat);

reset(fil);

write(`f=);

readln(fil,nf);

{****************************************}

for i:=0 to nf-1 do {begin }

read(fil,f0[i]);write(f0[i], `)end;

writeln;

znach(f0,f0);

gran(k,b,f0[0],n0);

{*****************************************}

for i:=0 to nf-1 do f1[i]:=f0[nf-1-i];

znach(f1,f1);

gran(k,b,f1[0],n1);

{******************************************}

for i:=0 to nf-1 do

if odd(nf-1-i)=true then f2[i]:=-1*f0[i]

else f2[i]:=f0[i];

znach(f2,f2);

gran(k,b,f2[0],n2);

{************************************************}

for i:=0 to nf-1 do

if odd(nf-1-i)=true then f3[i]:=-1*f0[nf-1-i]

else f3[i]:=f0[nf-1-i];

znach(f3,f3);

gran(k,b,f3[0],n3);

if n0<>0 then begin

writeln(`відрізок додатних коренів [`,1/n1:1:3, ; `,n0:1:3,]);

delenie(1/n1,n0);

for i:=0 to iprom-1 do begin

korni(prom[i],prom[i+1]);

writeln(kpol[i]:1:2{, `,znachenie(f0,kpol[i]):1:2}); end; end

else writeln(немає додатніх коренів);

if n3<>0 then begin

writeln(Відрізок відємних коренів [,-1*n2:1:3, ; ,-1/n3:1:3,]);

delenie(-1*n2,-1/n3);

for i:=0 to iprom-1 do begin

korni(prom[i],prom[i+1]);

writeln(kpol[i]:1:2, `,znachenie(f0,kpol[i]):1:2); end; end

else writeln(немає відємних коренів);

readkey;

end.

3. Контрольні приклади

x3-4x2-7x+10=0

відрізок додатних коренів [0,588;8,000]

1,00

5,00

відрізок відємних коренів [-4,162;-0,163]

-2,00

x5+2x4-5x3+8x2-7x-3=0

відрізок додатних коренів [0,380;3,646]

1,31

відрізок відємних коренів [-9,000;-0,273]

-3,91

-0,30

3x5+7x4-8x3+5x2-2x-1=0

відрізок додатних коренів [0,274;2,633]

0,77

відрізок відємних коренів [-3,667;-0,111]

-3,31

-0,26

x3-2,8x2-0,35x+3,45-0

відрізок додатних коренів [0,552;3,800]

1,50

2,30

відрізок відємних коренів [-9,000;-0,273]

-1,00

Висновок

В курсовій роботі були розглянуті методи наближеного пошуку меж та самих коренів многочлена з дійсними коренями. Можна знайти багато інших методів наближеного знаходження коренів. Один з них найбільш вдосконалим є метод Лобачевського. Цей метод дозволяє знаходити наближення значення всіх коренів відразу, у тому числі і комплексних, причому не потребує відділення коренів; однако він звязан з великими обчисленнями.

Література

1. А. Г. Курош «Курс высшей алгебры», «Наука», Москва 1975

2. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 1,«Высшая школа», Киев 1974

3. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 2,«Высшая школа», Киев 1976










 
Показывать только:
Портфель:
Выбранных работ  



Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Метод наближеного обчислення коренів. Програма | курсовая работа

СтудентБанк.ру © 2016 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег