Главная   Добавить в избранное Линейная алгебра | лабораторная работа


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней
 




Линейная алгебра - лабораторная работа


Категория: Лабораторные работы
Рубрика: Математика
Размер файла: 7 Kb
Количество загрузок:
103
Количество просмотров:
982
Описание работы: лабораторная работа на тему Линейная алгебра
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



Обратная матрица.

Матрица A-1 - обратная для матрицы A, если AA-1=A-1A=I

Для квадратной матрицы A обратная существует тогда и только тогда, когда detA0.

где Aij - алгебраические дополнения элементов aij матрицы A.

Свойства: (A-1)-1=A,

(AB)-1=B-1A-1, detA-1=1/detA

В частности:

Решение квадратной системы:

Ax=b

если A0, то x=A-1b

Матричные уравнения.

XA=B X=BA-1

AX=B X=A-1B

Некоторые св-ва определителей:

1.* Величина определителя не изменится, если каждую строку заменить столбцом с тем же номером.

2. Если матрица B получена из матрицы A перестановкой двух каких-либо ее строк (столбцов*), то detB=detA.

3. Общий множитель всех элементов произвольной строки (столбца*) определителя можно вынести за знак определителя.

4.* Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

5. Определитель не меняется от прибавления к какой-либо его строке (столбцу*) другой его строки (столбца), умноженной на произвольное число.

6.* Если какая-либо строка (столбец) определителя есть линейная комбинация других его строк (столбцов), то определитель равен 0.

7. Если матрица имеет треугольный вид, то ее определитель равен произведению элементов на главной диагонали.

*-неизученные свойства.

Фундаментальная система решений.

Фундаментальной системой решений называется система из (n-r) линейно независимых решений, где n-число неизвестных, r-ранг матрицы системы:

ФСР: l1,l2,...,ln-r

ФСР может быть бесконечное множество.

Если l1,l2,...,ln-r-ФСР однородной системы, то

xоо = с1l12l2+...+сn-r ln-r

xон = xоо + xчн

Метод Крамера:

Если =0 и не все xj=0, то система несовместна.

Если 0, то система имеет единственное решение,

где xj - определитель, полученный заменой j-го столбца в определителе системы столбцом свободных членов.










 
Показывать только:
Портфель:
Выбранных работ  



Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Линейная алгебра | лабораторная работа

СтудентБанк.ру © 2016 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег