56
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
им. В.И. ВЕРНАДСКОГО
ФАКУЛЬТЕТ МАТЕМАТИКИ И ИНФОРМАТИКИ
КАФЕДРА АЛГЕБРЫ И ФУНКЦИОНАЛЬНОГО АНАЛИЗА
*-АЛГЕБРЫ И ИХ ПРИМЕНЕНИЕ
Дипломная работа специалиста
|
|
студент 5 курса специальности математика
_________________________________
НАУЧНЫЕ РУКОВОДИТЕЛИ:
ассистент каф. алгебры и функционального анализа
_________________________________
профессор, доктор физико-математических наук
_________________________________
РЕШЕНИЕ О ДОПУСКЕ К ЗАЩИТЕ:
зав. кафедрой, профессор, д.ф.м.н.
_________________________________
|
|
|
СИМФЕРОПОЛЬ
2003
СОДЕРЖАНИЕ
Введение……………………………………………………………………………..4
Глава I. Основные понятия и определения…………………………………….6
§ 1. * - алгебры……………………………………………………………………...6
1.1. Определение * - алгебры……………………………………………………….6
1.2. Примеры…………………………………………………………………………7
1.3. Алгебры с единицей…………………………………………………………….7
1.4. Простейшие свойства * - алгебр……………………………………………….9
1.5. Гомоморфизм и изоморфизм алгебр…………………………………………11
§ 2. Представления ……………………………………………………………….13
2.1. Определение и простейшие свойства представлений……………………….13
2.2. Прямая сумма представлений ………………………………………………..15
2.3. Неприводимые представления………………………………………………..16
2.4. Конечномерные представления……………………………………………….19
2.5. Интегрирование и дезинтегрирование представлений ……………………..20
§ 3. Тензорные произведения……………………………………………………26
3.1. Тензорные произведения пространств……………………………………….26
3.2. Тензорные произведения операторов………………………………………..28
Глава II. Задача о двух ортопроекторах………………………………………..31
§ 1. Два ортопроектора в унитарном пространстве…………………………..31
1.1. Постановка задачи……………………………………………………………..31
1.2. Одномерные *-представления *-алгебры P2 ……………………………….31
1.3. Двумерные *-представления *-алгебры P2 ……………………………….32
1.4. n-мерные *-представления *-алгебры P2 …………………………………35
1.5. Спектральная теорема…………………………………………………………37
§ 2. Два ортопроектора в сепарабельном гильбертовом пространстве……39
2.1. Неприводимые *-представления *-алгебры P2 …………………………...39
2.2. Спектральная теорема…………………………………………………………41
Глава III. Спектр суммы двух ортопроекторов ……………………………...45
§ 1. Спектр суммы двух ортопроекторов в унитарном пространстве……...45
1.1. Спектр ортопроектора в гильбертовом пространстве……………………….45
1.2. Постановка задачи……………………………………………………………..45
1.3. Спектр в одномерном пространстве………………………………………….45
1.4. Спектр в двумерном пространстве……………………………………….…..46
1.5. Спектр в n-мерном пространстве……………………………………………..47
1.6. Линейная комбинация ортопроекторов………………………………………49
§ 2. Спектр суммы двух ортопроекторов в сепарабельном
гильбертовом пространстве …………………………………………………….52
2.1. Спектр оператора А = Р1 +Р2 …………………………………………………52
2.2. Спектр линейной комбинации А = аР1 + bР2 (0<а<b) ……………………..53
Заключение………………………………………………………………………..55
Литература ………………………………………………………………………..56
ВВЕДЕНИЕ
Пусть Н - гильбертово пространство, L(Н) - множество непрерывных линейных операторов в Н. Рассмотрим подмножество А в L(Н), сохраняющееся при сложении, умножении, умножении на скаляры и сопряжении. Тогда А - операторная *-алгебра. Если дана абстрактная *-алгебра А, то одна из основных задач теории линейных представлений (*-гомоморфизмов А в L(Н)) - перечислить все ее неприводимые представления (с точностью до эквивалентности).
Теория унитарных представлений групп восходит к XIX веку и связана с именами Г.Фробениуса, И.Шура, В.Бернсайда, Ф.Э. Молина и др. В связи с предложениями к квантовой физике теория унитарных представлений топологических групп, групп Ли, С*-алгебр была разработана И.М.Гельфандом, М.А. Наймарком, И.Сигалом, Ж.Диксмье, А.А. Кирилловым и др. в 60-70-х годах XX века. В дальнейшем интенсивно развивается теория представлений *-алгебр, заданных образующими и соотношениями.
Дипломная работа посвящена развитию теории представлений (конечномерных и бесконечномерных) *-алгебр, порожденных двумя проекторами.
Глава I в краткой форме содержит необходимые для дальнейшего сведения из теории представлений и функционального анализа. В §1 дано определение *-алгебры и приведены простейшие свойства этих алгебр. В §2 излагаются основные свойства представлений, вводятся следующие понятия: неприводимость, эквивалентность, прямая сумма, интегрирование и дезинтегрирование представлений. В §3 определяются тензорные произведения пространств, тензорные произведения операторов и др. (см. [2], [3], [4], [8], [9])
В Главе II изучаются представления *-алгебры P2
P2 = С < p1, p2 | p12 = p1* = p1, p22 = p2* = p2 >,
порожденной двумя самосопряженными идемпотентами, то есть проекторами (см., например, [12]). Найдены все неприводимые *-представления *-алгебры P2, с точностью до эквивалентности., доказаны соответствующие спектральные теоремы.
В §1 рассматриваются только конечномерные *-представления р в унитарном пространстве Н. Описаны все неприводимые и неэквивалентные *-представления *-алгебры P2 . Неприводимые *-представления P2 одномерны и двумерны:
4 одномерных: р0,0(p1) = 0, р0,0(p2) = 0; р0,1(p1) = 0, р0,1(p2) = 1;
р1,0(p1) = 1, р1,0(p2) = 0; р1,1(p1) = 1, р1,1(p2) = 1.
И двумерные: , ф (0, 1).
Доказана спектральная теорема о разложении пространства Н в ортогональную сумму инвариантных относительно р подпространств Н, а также получено разложение р на неприводимые *-представления. Результаты §1 относятся к математическому фольклору.
В §2 получены основные результаты работы. Для пары проекторов в сепарабельном гильбертовом пространстве Н приведено описание всех неприводимых представлений, доказана спектральная теорема.
В Главе III спектральная теорема для пары проекторов Р1, Р2, применяется к изучению сумм Р1+Р2, аР1+bР2 (0 < a < b). Получены необходимое и достаточное условие на самосопряженный оператор А для того чтобы А = Р1+Р2 или А = аР1+bР2, 0 < a < b, (этот частный случай задачи Г.Вейля (1912 г.) о спектре суммы пары самосопряженных операторов).
Глава I. Основные понятия и определения
§ 1. - алгебры
1.1. Определение - алгебры.
Определение 1.1. Совокупность А элементов x, y, … называется алгеб-
рой, если:
1) А есть линейное пространство;
2) в А введена операция умножения (вообще некоммутативного), удовлет-
воряющая следующим условиям:
б (x y) = (б x) y,
x (б y) = б (x y),
(x y) z = x (y z),
(x + y) = xz +xy,
x (y + z) = xy + xz для любых x, y, z А и любых чисел б.
Два элемента x, y алгебры А называются перестановочными, если xy = yx. Алгебра А называется коммутативной, если все ее элементы попарно пере-
становочны.
Определение 1.2. Пусть А - алгебра над полем С комплексных чисел. Инволюцией в А называется такое отображение x ? x* алгебры А в А, что
(i) (x*)* = x;
(ii) (x + y)* = x* + y*;
(iii) (б x)* = x*;
(iv) (x y)* = y*x* для любых x, y С.
Алгебра над С, снабженная инволюцией, называется инволютивной алгеброй или *- алгеброй. Элемент х* называют сопряженным к х. Подмножество А, сохраняющееся при инволюции, называется само-
сопряженным.
Из свойства (i) следует, что инволюция в А необходимо является биекцией А на А.
1.2. Примеры
1) На А = С отображение z ? (комплексное число, сопряженное к z) есть инволюция, превращающая С в коммутативную *- алгебру.
2) Пусть Т - локально компактное пространство, А = С(Т) - алгебра непре-
рывных комплексных функций на Т, стремящихся к нулю на бесконечности (то есть для любого е > 0 множество {tT: |f (t)| е} компактно, f (t) А. Снабжая А отображением f? получаем коммутативную *- алгебру. Если Т сводится к одной точке, то возвращаемся к примеру 1).
3) Пусть Н - гильбертово пространство. А = L(H) - алгебра ограниченных линейных операторов в Н. Зададим инволюцию как переход к сопряженному оператору. Тогда А - *- алгебра.
4) Обозначим через К(Н) совокупность всех компактных операторов в гильбертовом пространстве Н; операции сложения, умножения на число и умножения определим как соответствующие действия с операторами. Тогда К(Н) будет *- алгеброй, если ввести инволюцию А?А* (АК(Н)). Алгебра К(Н) в случае бесконечного Н есть алгебра без единицы. Действительно, если единичный оператор I принадлежит К(Н), то он переводит открытый единичный шар S H в себя. Значит I не может быть компактным оператором.
5) Обозначим через W совокупность всех абсолютно сходящихся рядов .
Алгебра W есть *- алгебра, если положить . ()
1.3. Алгебры с единицей
Определение 1.3. Алгебра А называется алгеброй с единицей, если А содержит элемент е, удовлетворяющий условию
ех = хе = х для всех хА (1.1.)
Элемент е называют единицей алгебры А.
Теорема 1.1. Алгебра А не может иметь больше одной единицы.
Доказательство. Действительно, если еґ - также единица в А, то
еґх = хеґ = х, для всех хА (1.2.)
Полагая в (1.1.) х = еґ, а в (1.2.) х = е, получим:
ееґ = еґе = еґ и еґе = ееґ =е, следовательно еґ = е.
Теорема 1.2. Всякую алгебру А без единицы можно рассматривать как подалгебру некоторой алгебры Аґ с единицей.
Доказательство. Искомая алгебра должна содержать все суммы хґ=бе + х, хА; с другой стороны, совокупность всех таких сумм образует алгебру Аґ, в которой основные операции определяются формулами:
в(бе + х) = вбе + вх, (б1е + х1) + (б2е + х2) = (б1 + б2)е + (х1 + х2),
(б1 е + х1)(б2 е+ х2 )=б1 б2 е +б1 х2 +б2 х1 + х1 х2 (1.3.)
Каждый элемент хґ из Аґ представляется единственным образом в виде
хґ = бе + х, хА, так как по условию А не содержит единицы. Поэтому Аґ можно реализовать как совокупность всех формальных сумм хґ = бе + х, хА, в которой основные операции определяются формулами (1.3.); сама алгебра А получится при б = 0.
Алгебру Аґ можно также реализовать как совокупность всех пар (б, х), хА, в которой основные операции определяются по формулам:
в (б, х) = (вб, вх), (б1, х1) + (б2, х2) = (б1 + б2, х1 + х2),
(б1, х1)(б2, х2) = (б1б2, б1х2 + б2 х1 + х1х2), (1.4.)
аналогично тому, как определяются комплексные числа. Саму алгебру А можно тогда рассматривать как совокупность всех пар (0, х), хА и не делать различия между х и (0, х). Полагая е = (0, х), мы получим:
(б, х) = б(1, 0) + (0, х) = бе + х,
так что вторая реализация алгебры Аґ равносильна первой.
Переход от А к Аґ называется присоединением единицы.
Определение 1.4. Элемент y называется левым обратным элемента х, если xy = e. Элемент z называется правым обратным элемента х, если xz = e.
Если элемент х имеет и левый, и правый обратные, то все левые и правые обратные элемента х совпадают. Действительно, умножая обе части равенства yx = e справа на z, получим
z = (yx)z = y(xz) = ye,
В этом случае говорят, что существует обратный х-1 элемента х.
1.4. Простейшие свойства - алгебр
Определение 1.5. Элемент х *-алгебры А называется эрмитовым или самосопряженным, если х* = х, нормальным, если хх* = х*х. Идемпотентный эрмитов элемент называется проектором. Элемент алгебры называется идемпотентным, если все его (натуральные) степени совпадают.
Каждый эрмитов элемент нормален. Множество эрмитовых элементов есть вещественное векторное подпространство А. Если х и y эрмитовы, то (xy)*= y*x* = yx; следовательно, xy эрмитов, если x и y перестановочны. Для каждого хА элементы хх* и х*х эрмитовы. Но, вообще говоря, эрмитов элемент не всегда представим в этом виде, как показывает пример 1 из пункта 1.2. Действительно, для любого zC , но если z действительно отрицательное число, то его нельзя представить в виде .
Теорема 1.3. Всякий элемент х *-алгебры А можно представить, и притом единственным образом, в виде х = х1 +iх2, где х1, х2 - эрмитовы элементы.
Доказательство. Если такое представление имеет место, то х* = х1 +iх2, следовательно:
, (1.5.)
Таким образом, это представление единственно. Обратно, элементы х1, х2, определенные равенством (1.5.), эрмитовы и х = х1 +iх2.
Эти элементы х1, х2 называются эрмитовыми компонентами элемента х.
Заметим, что хх* = х12 + х22 + i(х2х1 - х1х2),
хх* = х12 + х22 - i(х2х1 - х1х2)
так что х нормален тогда и только тогда, когда х1 и х2 перестановочны.
Так как е*е = е* есть эрмитов элемент, то е* = е , то есть единица эрмитов элемент.
Если А - *-алгебра без единицы, а Аґ - алгебра, полученная из А присоединением единицы, то, положив при хА, мы определим инволюцию в Аґ, удовлетворяющую всем требованиям определения 2. Так что Аґ станет *-алгеброй. Говорят, что Аґ есть *-алгебра, полученная из А присоединением единицы.
Теорема 1.4. Если х-1 существует, то (х*)-1 также существует и
(х*)-1 = (х-1)*
Доказательство. Применяя операцию * к обеим частям соотношения
х-1х = хх-1 = е,
получим х*(х-1)*= (х*)-1х*=е.
Но это означает, что (х-1)* есть обратный к х*.
Подалгебра А1 алгебры А называется *-подалгеброй, если из хА1 следует, что х*А1 .
Непустое пересечение *-подалгебр есть также *-подалгебра. В частности, пересечение всех *-поалгебр, содержащих данное множество S А, есть минимальная *-подалгебра, содержащая S.
Коммутативная *-алгебра называется максимальной, если она не содержится ни в какой другой коммутативной *-подалгебре.
Теорема 1.5. Если В - максимальная коммутативная *-подалгебра, содержащая нормальный элемент х , и если х-1 существует, то х-1В.
Доказательство. Так как х т х* перестановочны со всеми элементами из В, то этим же свойством обладают х-1 и (х*)-1 = (х-1)*. В силу максимальности В отсюда следует, что х-1В.
Определение 1.6. Элемент хА - *-алгебры называется унитарным, если хх* = х*х = е, иначе говоря, если х обратим и х = (х*)-1.
В примере 1 п.1.2. унитарные элементы - комплексные числа с модулем, равным 1.
Унитарные элементы А образуют группу по умножению - унитарную группу А. Действительно, если x и y - унитарные элементы *-алгебры А, то
((хy)*)-1 = (у*х*)-1 =(х*)-1 (y*)-1 = xy,
поэтому xy унитарен, и так как ((х-1)*)-1= ((х*)-1)-1 = х-1, то х-1 унитарен.
1.5. Гомоморфизм и изоморфизм алгебр
Определение 1.7. Пусть А и В - две *-алгебры. Назовем гомоморфизмом (*-гомоморфизмом) А в В такое отображение f множества А в В, что
f (x + y) = f (x) + f (y),
f (бx) = б f (x),
f (xy) = f (x) f (y),
f (x*) = f (x)*
для любых х,yА, бС. Если отображение f биективно, то f называют изоморфизмом (*-изоморфизмом).
Определение 1.8. Совокупность I элементов алгебры А называется левым идеалом, если:
(i) I ? A;
(ii) Из х, yI следует x + y I;
(iii) Из хI, а бА следует б хI.
Если I = А, то I называют несобственным идеалом.
Аналогично определяется и правый идеал. Идеал, являющийся одновременно и левым, и правым, называется двусторонним.
Всякий идеал автоматически оказывается алгеброй.
Пусть I - двусторонний идеал в алгебре А. Два элемента х, y из А назовем эквивалентными относительно идеала I, если х-yI. Тогда вся алгебра А разбивается на классы эквивалентных между собой элементов. Обозначим через А совокупность всех этих классов. Введем в А1 операции сложения, умножения на число и умножения, производя эти действия над представителями классов. Так как I - двусторонний идеал, то результат операций не зависит от выбора этих представителей.
Следовательно, А1 становится алгеброй. Эта алгебра называется фактор-алгеброй алгебры А по идеалу I и обозначается A/I.
*-гомоморфизм алгебр описывается при помощи так называемых самосопряженных двусторонних идеалов.
Определение 1.9. Идеал I (левый, правый или двусторонний) называется самосопряженным, если из хI следует х*I.
Самосопряженный идеал автоматически является двусторонним. Действительно, отображение х > х* переводит левый идеал в правый и правый идеал в левый; если поэтому отображение х > х* переводит I в I, то I есть одновременно и левый и правый идеал.
В фактор-алгебре A/I по самосопряженному двустороннему идеалу I можно определить инволюцию следующим образом. Если х-yI, то х*-y*I. Поэтому при переходе от х к х* каждый класс вычетов х по идеалу I переходит в некоторый другой класс вычетов по I. Все условия из определения 1.2. выполнены; следовательно, A/I есть *-алгебра.
Если х > хґ есть *-гомоморфизм А на Аґ, то полный прообраз I нуля (то есть ядро данного гомоморфизма) есть самосопряженный двусторонний идеал в А. Фактор-алгебра A/I *-изоморфна *-алгебре Аґ.
Обратно, отображение х > [х] каждого элемента хА в содержащий его класс вычетов по I есть *-гомоморфизм алгебра А на A/I.
§ 2. Представления
2.1. Определения и простейшие свойства представлений.
Определение 2.1. Пусть А - *-алгебра, Н - гильбертово пространство. Представлением А в Н называется *-гомоморфизм *-алгебры А в *-алгебру ограниченных линейных операторов L(H).
Иначе говоря, представление *-алгебры А в Н есть такое отображение из А в L(H), что
р (x+y) = р (x) + р (y), р (б x) = б р(x),
р (xy) = р (x) р (y), р (x*) = р (x)*
для любых х, y А и б С.
Размерность гильбертова пространства Н называется размеренностью р и обозначается dimр. Пространство Н называется пространством представления р.
Определение 2.2. Два представления р1 и р2 инволютивной алгебры А в Н1 и Н2 соответственно, эквивалентны (или унитарно эквивалентны), если существует унитарный оператор U, действующий из гильбертова пространства Н1 в гильбертово пространство Н2, переводящий р1(х) в р2(х) для любого хА, то есть
U р1(х) = р2(х) U для всех х А.
Определение 2.3. Представление р называется циклическим, если в пространстве Н существует вектор f такой, что множество всех векторов р (х)f (для всех хА) плотно в Н. Вектор f называют циклическим (или тотализирующим) для представления р.
Определение 2.4. Подпространство Н1Н называется инвариантным, относительно представления р, если р (А)Н1Н1.
Если Н1 инвариантное подпространство, то все операторы р(х) (хА) можно рассматривать как операторы Н1. Сужения р(х) на Н1 определяют подпредставления р1 *-алгебры А в Н1.
Теорема 2.1. Если Н1 инвариантное подпространство Н, то его ортогональное дополнение также инвариантно.
Доказательство. Пусть f ортогонален к Н1, то есть (f, g) = 0 для всех gН1. Тогда для любого хА (р(х)f, g) = (f, р(х)*g) = (f, р(х*)g) = 0, так как р(х*)gН1. Следовательно, вектор р(х)f также ортогонален к Н1.
Обозначим через Р1 оператор проектирования в Н на подпространство Н1Н1.
Теорема 2.2. Н1 - инвариантное подпространство тогда и только тогда, когда все операторы представления перестановочны с оператором проектирования Р1 на Н1.
Доказательство. Пусть Н1 - инвариантное подпространство и fН1, но также р(х)f Н1. Отсюда для любого вектора fН
р(х)Р1f Н1
следовательно, Р1р(х)Р1f = р(х)Р1f ,
то есть Р1р(х)Р1 = р(х)Р1.
Применяя операцию инволюции к обеим частям этого равенства и подставляя затем х* вместо х, получаем, что также
Р1р(х)Р1 = Р1р(х).
Следовательно, Р1р(х) = р(х)Р1; операторы Р1 и р(х) коммутируют.
Обратно, если эти операторы перестановочны, то для fН1
Р1р(х)f = р(х)Р1f = р(х)f ;
Следовательно, также р(х)f Н1. Это означает, что Н1 - инвариантное подпространство.
Теорема 2.3. Замкнутая линейная оболочка К инвариантных подпрост-
ранств есть также инвариантное подпространство.
Доказательство. Всякий элемент g из К есть предел конечных сумм вида
h = f1 + … + fn, где f1, …, fn - векторы исходных подпространств. С другой стороны, р(х)h = р(х)f1 +…+ р(х)fn есть сумма того же вида и имеет своим пределом р(х)g.
2.2. Прямая сумма представлений. Пусть I - произвольное множество. Пусть (рi)iI - семейство представлений *-алгебры А в гильбертовом пространстве Нi (iI). Пусть
|| рi (х) || = сх
где сх - положительная константа, не зависящая от i.
Обозначим через Н прямую сумму пространств Нi, то есть Н = Нi. В силу (2.1.) можно образовать непрерывный линейный оператор р(х) в Н, который индуцирует рi (х) в каждом Нi. Тогда отображение х > р(х) есть представление А в Н, называемое прямой суммой представлений рi и обозначаемое рi или р1…..рn в случае конечного семейства представлений (р1…..рn). Если (рi)iI - семейство представлений *-алгебры А, совпадающих с представлением р, и если CardI = c, то представления рi обозначается через ср. Всякое представление, эквивалентное представлению этого типа, называется кратным р.
Для доказательства следующего понадобится лемма Цорна. Напомним ее.
Лемма Цорна. Если в частично упорядоченном подмножестве Х всякое линейно упорядоченное подмножество имеет в Х верхнюю грань, то Х содержит максимальный элемент.
Теорема 2.4. Всякое представление есть прямая сумма цикличных представлений.
Доказательство. Пусть f0 ? 0 - какой-либо вектор из Н. Рассмотрим совокупность всех векторов р(х)f0, где х пробегает всю *-алгебру А. Замыкание этой совокупности обозначим через Н1. Тогда Н1 - инвариантное подпространство, в котором f0 есть циклический вектор. Другими словами, Н1 есть циклическое подпространство представления р.
Если Н1 = H, то предложение доказано; в противном случае H-Н1 есть отличное от {0} инвариантное подпространство. Применяя к нему тот же прием, мы выделим циклическое подпространство Н2 ортогональное Н1.
Обозначим через М совокупность всех систем {Нб}, состоящих из взаимно ортогональных циклических подпространств представления; одной из таких систем является построенная выше система {Н1, Н2}. Упорядоченная при помощи соотношения включения совокупность М образует частично упорядоченное множество, удовлетворяющее условиям леммы Цорна; именно, верхней гранью линейно упорядоченного множества систем {Нб}М будет объединение этих систем. Поэтому в М существует максимальная система {Нб}. Но тогда Н=Нб; в противном случае в инвариантном подпространстве Н-(Нб) существовало бы отличное от {0} циклическое подпространство Н0 и мы получили бы систему {Нб}Н0М, содержащую максимальную систему {Нб}, что невозможно.
2.3. Неприводимые представления.
Определение 2.5. Представление называется неприводимым, если в пространстве Н не существует инвариантного подпространства, отличного от {0} и всего Н.
Согласно теореме 2.2. это означает, что всякий оператор проектирования, перестановочный со всеми операторами представления, равен 0 или 1.
Всякое представление в одномерном пространстве неприводимо.
Теорема 2.5. Представление р в пространстве Н неприводимо тогда и только тогда, когда всякий отличный от нуля вектор пространства Н есть циклический вектор этого представления.
Доказательство. Пусть представление р неприводимо. При fН, f ? 0, подпространство, натянутое на векторы р(х)f , хА, есть инвариантное подпространство; в силу неприводимости представления оно совпадает с {0} или Н. Но первый случай невозможен, ибо тогда одномерное пространство
{б f | б C} инвариантно и потому совпадает с Н, то есть р(х)=0 в Н. Во втором же случае f есть циклический вектор.
Обратно, если представление р приводимо и К - отличное от {0} и Н инвариантное подпространство в Н, то никакой вектор f из К не будет циклическим для представления р в Н.
Теорема 2.6. (И.Шур) Представление р неприводимо тогда и только тогда, когда коммутант р (А) в L(H) сводится к скалярам (то есть операторам кратным единичному).
Доказательство. Пусть представление р неприводимо и пусть ограни-
ченный оператор В перестановочен со всеми операторами р(х). Предположим сначала, что В - эрмитов оператор; обозначим через E(л) спектральные проекторы оператора В. Тогда при любом л оператор E(л) перестановочен со всеми операторами р(х) ; в виду неприводимости представления E(л) =0 или E(л) =1, так как (E(л) f, f) не убывает при возрастании л, то отсюда следует, что существует л0 такое, что E(л) =0 при л<л0 и E(л) =1 при л>л0 . Отсюда
В=л dE(л) = л0 1.
Пусть теперь В - произвольный ограниченный оператор, переста-
новочный со всеми операторами р(х). Тогда В* также перестановочен со всеми операторами р(х). Действительно,
В*р(х) = (р(х*)В)* = (Вр(х*))* = р(х)В*
Поэтому эрмитовы операторы В1=, В2= также перестановочны со всеми операторами р(х) и, следовательно, кратны единице. Но тогда и оператор В = В1+iВ2 кратен единице, то есть В - скаляр.
Обратно, пусть всякий ограниченный оператор, перестановочный со всеми операторами р(х), кратен единице. Тогда, в частности, всякий оператор проектирования, перестановочный со всеми операторами р(х) кратен единице. Но оператор проектирования может быть кратным единице только тогда, когда он равен 0 или 1. Следовательно, представление неприводимо.
Определение 2.6 Всякий линейный оператор Т : Н ? Нґ такой, что Тр(х)=рґ(х)Т для любого хА, называется оператором сплетающим р и рґ.
Пусть Т : Н ? Нґ - оператор, сплетающий р и рґ. Тогда Т* : Нґ ? Н является оператором, сплетающим рґ и р, так как
Т* рґ(х) = (рґ(х)Т)* = (Тр(х*))* = р(х)Т*
Отсюда получаем, что
Т* Тр(х)=Т* рґ(х)Т= р(х)Т*Т (2.1.)
Поэтому |T| = (T*T)1/2 перестановочен с р(А). Пусть Т = U|T| - полярное разложение Т. Тогда для любого хА
Uр(х)|T| = U|T| р(х)= Тр(х)= рґ(х)Т=рґ(х)U|T| (2.2.)
Если KerT={0}, то |T| (Н) всюду плотно в Н и из (2.2.) следует
Uр(х) = рґ(х)U (2.3.)
Если, кроме того, = Нґ, то есть если KerT*={0}, то U является изоморфизмом Н и Нґ и (2.3.) доказывает что р и рґ эквивалентны.
Пусть р и рґ - неприводимые представления *-алгебры А в гильбертовых пространствах Н и Нґ соответственно. Допустим, что существует ненулевой сплетающий оператор Т : Н ? Нґ. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* - скалярны (?0) и р, рґ эквивалентны.
2.4. Конечномерные представления.
Теорема 2.7. Пусть р - конечномерное представление *-алгебры А. Тогда р = р1…..рn , где рi неприводимы.
Доказательство. Если dimр = 0 (n=0), то все доказано. Предположим, что dimр = q и что наше предложение доказано при dimр<q. Если р неприводимо, то предложение снова доказано. В противном случае р = рґ рґґ, причем dimрґ<q, dimрґґ<q, и достаточно применить предположение индукции.
Разложение р = р1…..рn не единственно. Тем не менее, мы получим некоторую теорему единственности.
Пусть с1, с2 - два неприводимых подпредставления р. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 - проекторы Н на Н1 и Н2. Они коммутируют с р(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий с1 и с2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что с1 и с2 эквивалентны. Это доказывает, что любое неприводимое подпредставление р эквивалентно одному из рi . Итак, перегруп-
пировав рi , получаем, что р = н1…..нm, где каждое нi есть кратное сiнiґ неприводимого представления нiґ, и нiґ попарно эквивалентны. Если с - неприводимое представление р, то предыдущее рассуждение показывает, что соответствующее инвариантное подпространство Нґ ортогонально всем инвариантным подпространствам Нi, отвечающих нi, кроме одного. Поэтому Нґ содержится в одном из Нi. Это доказывает, что каждое пространство Нi определяется однозначно: Нi - это подпространство Н, порожденное пространствами подпредставлений р, эквивалентных нiґ. Таким образом, доказано предложение.
Теорема 2.8. В разложении р = с1н1ґ…..сmнmґ представления р, (где н1ґ,…, нmґ неприводимы и неэквивалентны) целые числа сi и классы представлений нiґ определяются единственным образом, как и пространства представлений.
2.5. Интегрирование и дезинтегрирование представлений. Напомним определение борелевского пространства.
Определение 2.7. Борелевским пространством называется множество Т, снабженное множеством В подмножеств Т, обладающим следующими свойствами: ТВ, ШВ, В инвариантно относительно счетного объединения, счетного пересечения и перехода к дополнению.
Определение 2.8. Пусть Т1, Т2 - борелевские пространства. Отображение f: Т1?Т2 называется борелевским, если полный прообраз относительно f любого множества в Т2 есть борелевское множество в Т1.
Дадим несколько вспомогательных определений и утверждений.
Пусть Т - борелевское пространство и м - положительная мера на Т.
Определение 2.9. м - измеримое поле гильбертовых пространств на Т есть пара е = ((H(t))tT, Г), где (H(t))tT - семейство гильбертовых пространств, индексы которых пробегают Т, а Г - множество векторных полей, удовлетворяющее следующим условиям:
(i) Г - векторное подпространство Н(t);
(ii) существует последовательность (х1, х2,…) элементов Г таких, что для любого tT элементы хn(t) образуют последовательность H(t);
(iii) для любого хГ функция t?||x(t)|| м - измерима;
(iv) пусть х - векторное поле; если для любого yГ функция t?(x(t), y(t)) м - измерима, то хГ.
Пусть е = ((H(t))tT, Г) м - измеримое поле гильбертовых пространств на Т. Векторное поле х называется полем с интегрируемым квадратом, если хГ и ||x(t)||2 dм(t) < +8.
Если х, y - с интегрируем ...........
Страницы: [1] | 2 | 3 |
|