Главная   Добавить в избранное Дисперсные системы. Оптические свойства и методы исследования дисперсных систем | реферат


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней
 




Дисперсные системы. Оптические свойства и методы исследования дисперсных систем - реферат


Категория: Рефераты
Рубрика: Химия
Размер файла: 148 Kb
Количество загрузок:
214
Количество просмотров:
4298
Описание работы: реферат на тему Дисперсные системы. Оптические свойства и методы исследования дисперсных систем
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



Дисперсные системы. Оптические свойства и методы исследования дисперсных систем

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость (рис. 1.1.1.1).

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Поверхность раздела фаз характеризуется раздробленностью и гетерогенностью. Раздробленность характеризуется:

1) степенью дисперсности: , [см-1; м-1], где ?S - суммарная межфазная поверхность или поверхность всех частиц дисперсной фазы; V - объем частиц дисперсной фазы.

2) дисперсностью - величиной, обратной минимальному размеру:

[; ];

3)удельной поверхностью: , [м2/кг; см2/г]; ??где m - масса частиц дисперсной фазы.

4) кривизной поверхности: . Для частицы неправильной формы ,

где r1 и r2 - радиусы окружностей при прохождении через поверхность и нормаль к ней в данной точке двух перпендикулярных плоскостей.

Оптические свойства и методы исследования дисперсных систем

Оптические свойства дисперсных систем обусловлены взаимодействием электромагнитного излучения, обладающего определенной энергией, с частицами дисперсной фазы. Особенности оптических свойств дисперсных систем определяются природой частиц, их размерами, соотношением между длиной волны электромагнитного излучения и размерами частиц. Одним из характерных оптических свойств является рассеяние света.

В зависимости от свойств частиц дисперсной фазы и их размеров свет, проходя через дисперсную систему, может поглощаться, отражаться или рассеиваться.

Дисперсные системы способны к рассеянию света. В результате рассеяния проходящий через коллоидный раствор луч света становится видимым (эффект Тиндаля - рис. 1.3.1.1.). Этот вид рассеяния называется опалесценцией (в молекулярных и ионных растворах этот эффект не наблюдается).

Способностью к светорассеянию обладают не только частицы, но и ассоциаты молекул, макромолекулы, включения, нарушающие однородность среды. Рассеяние заключается в преобразовании веществом света, которое сопровождается изменением направления света. Схематически процесс рассеяния света выглядит так:

Р и с. 1.3.1.1. Иллюстрация эффекта Тиндаля

Световая волна вызывает поляризацию молекул, не проводящих и не поглощающих свет частиц, возникающий при этом дипольный момент определяется по уравнению: = Е, где - поляризуемость; Е - напряженность возбужденного электрического поля, образованного падающим светом.

Возникающие диполи колеблются с частотой падающего света и создают вторичное излучение во всех направлениях. В однородной среде свет, излучаемый всеми диполями вследствие интерференции, распространяется прямолинейно. В неоднородной среде, к которым относятся высокодисперсные системы с различным показателем преломления фазы и среды, интерференция отсутствует, и испускается некомпенсированное излучение в виде рассеянного света. Если энергия поглощенного кванта света (h) равна энергии испускаемого кванта (h1), то рассеяние будет рэлеевским (упругим). Оно реализуется, когда размеры частиц дисперсной фазы намного меньше длины волны света :

а < 0,1.

Длина волны видимого света колеблется в пределах 380 - 760 нм условие справедливо для высокодисперсной фазы.

В результате рассеяния интенсивность падающего света I0 изменяется и будет характеризоваться величиной Iр, которая определяется по уравнению Рэлея:

,

где vч - численная концентрация дисперсной фазы;

V - объем частиц (для шарообразной частицы равный 4r3/3);

r - радиус частицы;

- длина волны падающего света;

n1, n2 - показатели преломления дисперсной фазы и дисперсионной среды.

Рэлеевское светорассеяние характерно для неэлектропроводных, оптически однородных и прозрачных частиц («белые золи»). В соответствии с уравнением Рэлея, интенсивность рассеянного света при прочих равных условиях зависит от размеров частиц и их численной концентрации:

,

где k1 - коэффициент пропорциональности, означает, что другие члены уравнения неизменны.

При умножении числителя и знаменателя уравнения на (плотность материала частиц дисперсной фазы) произведение vчVр соответствует массе дисперсной фазы в единице объема, т.е. массовой концентрации vм интенсивность рассеянного света пропорциональна при постоянной массовой концентрации размеру частиц дисперсной фазы в третьей степени. Из уравнения Рэлея: .

Интенсивность рассеянного света зависит от показателей преломления фазы (n1) и среды (n2): .

Если n1 = n2, рассеяния не происходит, в однородных средах светорассеяния не наблюдается.

Свет рассеивается во всех направлениях (свет - векторная величина). Но его интенсивность неодинакова по направлениям, и может быть представлена в виде векторной диаграммы Ми (рис. 1.3.1.2)

Рассеянный свет обычно поляризован. Причина поляризации - поперечная анизотропия (неоднородность) световых лучей. На рис. 1.3.1.2 - рассеянный свет не поляризован в направлении падающего луча и полностью поляризован в плоскости, перпендикулярной падающему световому лучу. В это направлении образуется седловина. Максимальная интенсивность поляризованного света достигается на краях седловины, прямые 4, когда угол между падающим и рассеянным светом 550. Если падающий свет не поляризован, то интенсивность рассеянного света (отношение Jp/J0 пропорционально величине 1+ cos2. При = 0 рассеяние максимально, при = 900 оно отсутствует (Ip/2).

При значительной концентрации частиц, когда расстояние между частицами меньше длины волны падающего света, уравнение Рэлея теряет смысл.

Различие опалесценции и флуоресценции: оба явления связаны со свечением растворов. При опалесценции свечение вызвано рассеянием света коллоидным раствором. Флуоресценция характерна только для истинных растворов и связана с поглощением света одной длины волны и излучением света другой длины волны; в результате чего в отраженном свете раствор приобретает окраску. При опалесценции в отличие от флуоресценции рассеянный свет частично поляризован.

Молекулярно-кинетические свойства дисперсных систем

Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.

Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией. При данной температуре среднее значение кинетической энергии молекул остается постоянным, составляя для одной молекулы и одного моля:

; ,

где m - масса одной молекулы;

M - масса одного моля;

v - скорость движения молекул;

k - константа Больцмана;

R - универсальная газовая постоянная.

Флуктуация значений кинетической энергии молекул дисперсионной среды (т.е. отклонение от среднего) и является причиной молекулярно-кинетических свойств.

Изучение молекулярно-кинетических свойств возможно в результате применения статистических методов исследования, действительных для систем, состоящих из множества элементов (молекул). Исходя из допущения о беспорядочности движения отдельных молекул, теория определяет наиболее вероятное сочетание для систем из множества объектов. Молекулярно-кинетические свойства проявляются в жидкой и газообразной среде, молекулы которых обладают определенно подвижностью.

Броуновское движение

Броуновским называют непрерывное, хаотическое, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкостях или газах, за счет воздействия молекул дисперсионной среды.

Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, возникает сила, движущая частицу, направление и импульс силы, непрерывно меняются, поэтому частица совершает хаотические движения.

Определили эти изменения и связали их с молекулярно-кинетическими свойствами среды в 1907 году А. Эйнштейн и М. Смолуховский. В основе расчета - не истинный путь частицы дисперсной фазы, а сдвиг частиц. Если путь частицы определяется ломаной линией, то сдвиг х характеризует изменение координат частицы за определенный отрезок времени. Средний сдвиг определяет среднеквадратичное смещение частицы:

,

где х1, х2, хi - сдвиг частиц за определенное время.

Теория броуновского движения исходит из представления о взаимодействии случайной силы f(), характеризующей удары молекул, силы F, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде со скоростью v. Уравнение броуровского движения (уравнение Ланжевена) имеет вид: , где m - масса частицы; - коэффициент вязкости дисперсионной среды. Для больших промежутков времени (>>m/) инерцией частиц (m(dv/d) можно пренебречь. После интегрирования уравнения при условии, что среднее произведение импульсов случайной силы равно нулю, среднее значение флуктуации (средний сдвиг) равно: , где - время; r - радиус частиц дисперсной фазы; NA - число Авогадро частиц.

В этой формуле характеризует молекулярно-кинетические свойства дисперсионной среды, - ее вязкость, r - радиус частиц - параметр, относящийся к дисперсной фазе, а время определяет взаимодействие дисперсионной среды с дисперсной фазой.

Кроме поступательного, возможно вращательное броуновское движение для двухмерных частиц и частиц неправильной формы (нитей, волокон, хлопьев и т.д.).

Броуновское движение наиболее интенсивно проявляется в высокодисперсных системах (размеры частиц 10-9 10-7 м), несмотря на то, что молекулы дисперсионной среды действуют также и на частицы средне- и грубодисперсных систем. Но в связи со значительным размером частиц число ударов молекул резко увеличивается. По законам статистики, импульс действия сил со стороны молекул среды взаимно компенсируется, а значительная масса и инерция крупных частиц оставляет воздействие молекул без последствий.

Тема 1.1.2. Диффузия

Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц.

Ионная диффузия связана с самопроизвольным перемещением ионов.

Диффузия высокодисперсных коллоидных частиц показана на рис. 1.1.2.1. В нижней части концентрация частиц больше, чем в верхней, т.е. v1>v2 (где , м3 - численная концентрация частиц, N - число частиц дисперсной фазы, Vд.с. - объем дисперсной системы). Диффузия направлена из области с большей концентрации в область с меньшей концентрацией, т.е. снизу вверх (на рис. показано стрелкой). Диффузия характеризуется определенной скоростью перемещения вещества через поперечное сечение В, которая равна .

На расстоянии х разность концентраций составит v2 - v1, т к. v1>v2, эта величина отрицательна. Изменение концентрации, отнесенное к единице расстояния, называют градиентом концентрации или (в дифф. форме) .

Скорость перемещения вещества пропорциональна градиенту концентрации и площади В, через которую происходит движение диффузионного потока, т.е.

; -

- основное уравнение диффузии в дифференциальной форме.

Скорость диффузии () величина положительная, а градиент концентрации - отрицателен.; поэтому перед правой частью уравнения - знак «минус». Коэффициент пропорциональности D - это коэффициент диффузии. Основное уравнение справедливо для всех видов диффузии , в т.ч. и для коллоидных частиц. В интегральной форме оно применимо для двух процессов - стационарного и нестационарного:

для стационарного процесса: =const. Значительное число диффузионных процессов близко к стационарным. Интегрируя , получим:

;

- -й закон диффузии Фика.

Физический смысл коэффициента диффузии D: если -=1, В = 1 и = 1, то m = D, т.е. коэффициент диффузии численно равен массе диффундирующего вещества, когда градиент концентрации, площадь сечения диффузионного потока и время равны единице. Равенство только численное, т.к. размерность коэффициента диффузии [м2/с] не соответствует размерности массы.

для нестационарного процесса: const. Тогда интегрирование основного уравнения с учетом изменения градиента концентрации усложняется. При отсутствии в среде градиентов температуры, давления, электрического потенциала из уравнения определим массу вещества m1, переносимого в результате диффузии в единицу времени через единицу площади поверхности, перпендикулярной направлению переноса (В = 1 и = 1): , с учетом которого можно определить пространственно-временное распределение концентрации:

- второй закон Фика.

На рис. представлена одномерная диффузия, определяющая движение вещества в одном направлении. Возможна также двух- и трехмерная диффузия вещества (диффузия вещества в двух и трех направлениях), описываемая уравнением: , где I - вектор плотности диффузионного потока; grad v - градиент поля концентрации.

Для трехмерной диффузии, по второму закону Фика, запишем: .

Для двумерной диффузии в правой части уравнения ограничиваемся выражениями для х и y.

Значения коэффициента диффузии для видов её распределяются так: ионная - D = 10-8 м2/с; молекулярная - D = 10-9; коллоидных частиц - D = 10-10. Отсюда видно, что диффузия коллоидных частиц затруднена по сравнению с двумя другими видами. Так, скорость диффузии частиц карамели (дисперсная фаза - коллоидный раствор) в 100 - 1000 раз меньше скорости диффузии молекул сахара (молекулярный раствор). Соответственно в газах D увеличивается до 10-4, в твердых телах снижается до 10-12 м2/с.

Количественно диффузия определяется коэффициентом диффузии, связанным со средним сдвигом соотношением: ; - продолжительность диффузии.

Диффузия высокодисперсных частиц совершается беспорядочно с большей вероятностью в сторону меньшей концентрации. При выводе соотношения приняты следующие допущения: частицы дисперсной фазы движутся независимо друг от друга, между ними отсутствует взаимодействие; средняя энергия поступательных движений частиц равна 0,5 kT.

Используя формулу определения среднего сдвига, коэффициент диффузии можно представить в виде: (k - константа Больцмана, равная ). Если D известен, найдем размер частиц:

; чем больше размер частиц, тем меньше коэффициент диффузии, менее интенсивна сама диффузия.

Диффузия в полной мере проявляется у высокодисперсных систем (10-9 - 10-7 м), ослаблена у среднедисперсных (10-7 - 10-5 м) и практически отсутствует у грубодисперсных систем (>10-5 м). Коэффициент диффузии зависит и от формы частиц, что не учтено в уравнении . Поэтому формула определяет размер только коллоидных шарообразных частиц (или приведенный к шарообразному размер частиц неправильной формы).

Тема 1.2.3. Осмотическое давление

При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации к большей, выравнивающей концентрацию. Этот процесс называется осмосом.

На схеме (рис. 1.2.3.1) в сосуд с полупроницаемой перегородкой 3, помещен раствор 1. Перегородка пропускает дисперсионную среду (растворитель), но является препятствием для коллоидных частиц (растворенных веществ). Снаружи перегородки - чистый растворитель 2. Концентрация раствора по обе стороны перегородки различна. Внутри сосуда 1 часть раствора занимают молекулы растворенного вещества (частицы дисперсной фазы) концентрация растворителя там меньше, чем в емкости 2 с чистым растворителем.

За счет диффузии жидкость из области более высокой концентрации перемещается в область меньшей концентрации (из емкости 2 в сосуд 1). С кинетической точки зрения это обусловлено тем, что число ударов молекул о мембрану растворителя со стороны чистого или более разбавленного раствора больше, чем со стороны раствора, что и заставляет перемещаться растворитель через поры мембраны туда, где его меньше (т.е. в область раствора).

С термодинамической точки зрения, химический потенциал 2 чистой жидкости больше 1 растворителя в растворе, процесс самопроизвольно идет в сторону меньшего химического потенциала до их выравнивания: 2 = 1.

В результате перемещения жидкости в емкости 1 создается избыточное давление , называемое осмотическим. Растворитель, проникающий в область раствора 1, поднимает уровень жидкости на высоту Н, что компенсирует давление чистого растворителя в сторону раствора. Наступает момент, когда вес столба жидкости в области раствора уравнивается давлением растворителя.

Осмотическое давление - такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор)

Осмотическое давление достаточно разбавленных коллоидных растворов может быть найдено по уравнению:

или - уравнение Вант-Гоффа

где mобщ/m - масса растворенного вещества; m - масса одной частицы; V - объем частицы; NA - число Авогадро; Т - абсолютная температура; - частичная концентрация; k - постоянная Больцмана; М - масса одного моля растворенного вещества; с - массовая концентрация.










 
Показывать только:
Портфель:
Выбранных работ  



Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Дисперсные системы. Оптические свойства и методы исследования дисперсных систем | реферат

СтудентБанк.ру © 2016 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег