2
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ОДЕССКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
им. И.И.МЕЧНИКОВА
кафедра экспериментальной физики
ОСОБЕННОСТИ ФОТОПРОВОДИМОСТИ МОНОКРИСТАЛЛОВ СУЛЬФИДА КАДМИЯ
ПРИ КОМБИНИРОВАННОМ ВОЗБУЖДЕНИИ
Допускается к защите
Заведующий кафедрой
экспериментальной физики
академик _______________ Смынтына В.А.
Дипломная работа
студентки V курса
физического факультета
Минаевой Ольги Павловны
Научные руководители:
Профессор Чемересюк Г.Г.
Зав. лабораторией Каракис Ю.Н.
ОДЕССА - 2007
Содержание
Введение
Глава 1. Фотоэлектрические свойства неоднородных
полупроводниковых образцов
1.1. Свойства кристаллов, подвергнутых обработке в газовом разряде
1.2. Фотопроводимость при наличии запирающего барьера
1.3. Фотовольтаический эффект в полупроводниках с электрической
неоднородностью
1.4. Особенности фотопроводимости, обусловленные неоднородным
освещением
1.5 Обогащенный контактный слой в отсутствие тока
Глава 2. Энергетическая структура омического контакта в присутствии неравномерно распределенных электронных ловушек
2.1. Влияние ловушек на структуру барьера. Предварительный анализ
2.2. Распределение энергии в приконтактных слоях полупроводника с ловушками для электронов
2.3. Структура барьера в истощенном слое
2.4. Детализация явного вида функции распределения энергии
2.5. Энергетический профиль барьера в объеме полупроводника
2.6. Влияние освещения на профиль барьер
Глава 3. Фотоэлектрические свойства кристаллов, обработанных в
газовом разряде
3.1. Технология легирования образцов
3.2 Вольтамперные характеристики исследуемых структур
3.3. Спектральное распределение фототока
3.4. Спектральное распределение фото-э.д.с
3.5. Люкс-амперные характеристики
Выводы
Литература
Введение
Качество омических контактов к различным полупроводниковым устройствам является определяющим для их надежного и долговременного функционирования. Этим обеспечивается значительный интерес ко всем аспектам работы таких контактов - их созданию, особенностям протекания тока через них.
Вместе с тем известно, что свойства полупроводниковых веществ могут изменяться в широких пределах в зависимости от количества и качества образовавшихся дефектов. Разумеется, это неизбежно должно сказываться и на контактирующей части полупроводникового кристалла.
В настоящей работе рассмотрена задача о поведении изначально омического контакта к полупроводнику при появлении в его области пространственного заряда неравномерно распределенных электронных ловушек. Несмотря на очевидную актуальность этой проблемы, в литературе она практически не освещена.
Введение ловушечных центров в приконтактную область полупроводника, по-видимому, может кардинально изменить энергетическую структуру этой области. В частности, в случае электронных ловушек, возможно образование запирающего барьера. При этом значительно изменяются условия токопереноса и возникают специфические эффекты, близкие по природе к отрицательной фотопроводимости.
Мы ставим себе задачей выведение формулы, описывающей, как в темноте, так и на свету, вид возникающего барьера в зоне проводимости. А также определения связи параметров этого барьера - его ширины, высоты, координаты максимума, крутизны стенок - от свойств ловушек - их энергетической глубины, начальной концентрации и распределения по глубине образца. В тех случаях, когда прямой анализ был затруднителен, выявлялись, по крайней мере, тенденции зависимости.
Целью настоящей работы является показать, что неравномерно распределенные электронные ловушки способны сформировать запирающий барьер в области пространственного заряда омического контакта. Параметры его однозначно связанны с параметрами ловушек и значит, управляются технологически. При этом благодаря возникшему барьеру полупроводниковый кристалл приобретает новые свойства, в том числе и аномальные.
ГЛАВА 1
Фотоэлектрические свойства неоднородных полупроводниковых образцов
1.1. Свойства кристаллов, подвергнутых
обработке в газовом разряде
Изменения фотопроводимости, вызванные обработкой монокристаллических образцов халькогенидов кадмия в газовом разряде исследовали авторы [1-3]. Технология такой обработки заключается в следующем. Образец помещался в вакууме 10-210-3 мм.рт.ст. между электродами, к которым прикладывалось напряжение порядка нескольких киловольт. Использовались переменные поля промышленной частоты. В образовавшемся стримере разряда происходит бомбардировка заряженными частицами поверхности образца.
Об-работка поверхности монокрис-таллов халькогенидов кадмия газо-вым разрядом приводит к су-щественному изменению вида вольтамперных характеристик.[2]. До обработки они линейны во всем интервале применяемых напряжений. После обработки линейный участок темновой вольтамперной харак-теристики (рис. 1.1, кривая 1) сохраня-ется лишь при начальных на-пряжениях. Затем зависимость тока от напряжения становится сублинейной, достигая насыще-ния. При достаточно высоких электрических полях она пе-реходит в зависимость вида I ~V* где п > 2. При освеще-нии кристалла (рис. 1, кривая 2) светом с ? = 740 нм зависи-мость Iф(V) сохраняет все осо-бенности предыдущей кривой. Характерным является то, что при указанной подсветке в не-котором интервале напряжений кривая 2 проходит ниже кривой 1, т.е. ток, измеренный при возбуж-дении кристалла светом, оказывается меньшим темнового. При под-светке излучением из глубины полосы собственного поглощения (? = 500 нм) характеристика почти спрямляется в широкой области на-пряжений (рис. 1.1, кривая 3).
Обработка газовым разрядом поверхности кристаллов халькогенидов кадмия, наряду с уменьшением поверхностной рекомбинации, приводит к созданию большой концентрации электрон-ных ловушек в приповерхностном слое. Это должно вызвать не только резкое возрастание инерционности фототока, что действительно наблю-дается на опыте, но и уменьшение подвижности свободных носителей ? за счет дополнительного рассеяния их на заполненных электронами ловушках. Перезарядка ловушек может происходить как фотовозбужденными, так и инжектированными в кристалл электронами. Учитывая это, сублинейность и насыщение вольтамперных характеристик можно объяснить уменьшением подвижности за счет возрастания с увеличением напряжения концентрации инжектиро-ванных в образец электронов, заполняющих ловушки в припо-верхностном слое кристалла. Последующее быстрое возрастание тока с ростом напряжения может быть объяснено процессами, при-водящими к размножению свобод-ных носителей с помощью элек-трического поля (освобождение мелких ловушек полем или удар-ная их ионизация быстро движу-щимися электронами).
Рис. 1.1.Вольт - амперные характеристики монокристалла CdSe, обработанного газовым разрядом. 1 - в темноте,
2-при освещении светом с ?=730 нм, 3-при освещении светом с ?=500 нм.
Наблюдаемое уменьшение тока при освещении кристалла светом из области 730 нм можно интерпретировать как следствие увеличения числа рассеивающих центров при подсветке. Это может соответствовать заполнению ловушек фотоэлектронами или подъему электронов непосредственно из валентной зоны на уровни дефектов. Сравнение кривых 1 и 2 рисунка 1.1 показывает, что существует некоторая область напряжений, где ток, измеренный при освещении, имеет меньшую величину, чем соответствующий темновой ток. Это может произойти в результате настолько значительного уменьшения подвижности свобо-дных носителей, что возрастание их концентрации в результате фотовоз-буждения оказывается недостаточным для увеличения световой проводимости по сравнению с темновой. Возрастание эффекта с увеличением электрического поля связано с повышением концентрации рассеивающих центров, вследствие заполнения ловушек электронами. Однако, при достаточно боль-ших полях начинает сказываться ударная ионизация ловушек. Наибольшие изменения фотопроводимости достигается как результат равно-весия между этими двумя эффектами.
В случае возбуждения кристалла сильно поглощаемым светом фототок создается в тонком приповерхностном слое, что соответствует высокой плотности свободных носителей. Тогда ловушки уже полностью насыщены электронами, и инжектированные полем носители не меняют их зарядового состояния. При такой ситуации сублинейность зависи-мости фототока от напряжения проявляется слабо [2] (рис.1.1, кривая 3).
Резкая за-висимость эффекта от длины волны возбуждающего света показывает, что здесь сущес-твенную роль играет глубина проникновения света, т.е. за-висимость коэффициента погло-щения CdSe от длины волны возбуждающего света. При этом нужно учитывать, что обработка монокристалла газо-вым разрядом, вызывает повы-шение концентрации ловушек в тонком приповерхностном слое. Поэ-тому изменение фотопроводимости в дан-ном случае зависит от соотношения глуби-ны проникновения возбуждающего света в образец и глубины распространения рассеивающих центров. Если свет пол-ностью поглощается в очень тонком по-верхностном слое, то это соответствует случаю высокой плотности возбуждения. При проникновении возбужда-ющего света на большую глубину в кристалл свободные носители рождаются во всем объеме полупроводника, где плот-ность ловушек не повышена обработкой. Это снова приводит к стимулированию фототока. Наиболее благоприятным слу-чаем для изменения фотопроводимости можно считать совпа-дение глубины проникновения света с глубиной расположения ловушек.
1.2. Фотопроводимость при наличии
запирающего барьера
Авторы [4] наблюдали, что при освещении проводимость пленок CdS1-xSex сначала незначительно увеличивается, а потом резко уменьшается относительно темнового тока. С ростом интенсивности света зависимость имеет характер насыщения. При оптимальных условиях кратность фотоответа составляла ? = IT/IF ? 103 (IТ -- значение темнового, а IF -- светового тока). Причём проявляется лишь в некоторых интерва-лах значений интенсивности падающего на об-разец светового потока, приложенного напряжения и температуры.
На рис. 1.2 приведены вольт-амперные харак-теристики (ВАХ) пленок CdS0,6Se0,4, не подверг-нутых термической обработке. Кривая 2 (см. рис. 1.2) иллюстрирует зависи-мость темнового тока от приложенного напря-жения. При малых напряжениях (0--6 В) на ВАХ наблюдается линейный участок. С увеличением напряжения от 6 до 20 В линейный участок ВАХ переходит в суперлинейный участок, а при более высоких напряжениях зависимость имеет вид I ~ U?, где ? > 2.
При уменьшении приложен-ного напряжения на ВАХ наблюдается гистере-зис. С увеличением интенсивности падающего света образцы показывают остаточную проводимость (см.рис.1.2, кривая 3), и при более высоких значениях интенсивности света характеристика почти спрямляется в широкой области напряженности электрического поля (рис.1.2, кривая1) (0,5-130 В/см)
Вид этой ветви ВАХ авторы [4] определяли в основном явлением инжекции носителей при наличии захвата их на ловушках. Эксперимен-тальная величина тока в образцах существенно была меньше теоретического значения, полученного для идеального полупроводника. При малых значениях электрического поля инжектирован-ные электроны локализуются на ловушках, и это приводит к уменьшению тока. Резкое возраста-ние тока при больших значениях электрического поля связано с освобождением мелких ловушек полем или ударной ионизацией быстродвижущихся электронов. Захват инжектированных носителей заряда на ловушках приводит к мед-ленному падению тока через образец при фик-сированном напряжении и к появлению гистере-зиса на ВАХ при вводе - выводе электрического тока.
При освещении происходит заполнение ло-вушек фотоэлектронами или переход электронов непосредственно из валентной зоны на уровни дефектов, связанных адсорбированными атомами кислорода. При срав-нении кривых темнового и светового тока вид-но, что существует область напряжений, где фототок имеет меньшую величину, чем темно-вой, при тех же значениях приложенного на-пряжения.
Известно, что подобное явление наблюдается в полупро-водниках с долговременными релаксациями проводимости. Авторы считают, что это в большинстве случаев связано с наличием в объектах исследований макроскопических потенциальных барьеров. В общем случае эти барьеры связываются с неоднородностями различного происхождения, к списку которых можно отнести монокристалли-ческие границы, дислокации, кластеры и др. Наличие таких неоднородностей приводит к перестройке всей физической картины фото-электрических явлений.
По мнению авторов [4], в этом случае процессы связаны с наличием двух барьеров. Туннельный пере-ход электронов с барьера между кристаллами в барьер, связанный с адсорбированным кислородом приводит к уменьшению кратности фотоответа. По-следующий переход электронов с потенциаль-ного барьера в зону проводимости приво-дит к увеличению фотопроводимости.
1.3. Фотовольтаический эффект в полупроводниках
с электрической неоднородностью
Существование потенциального барьера в полупроводниковых образцах (как правило, структурах с разным типом проводимости или контактом разнородных областей) обычно сопровождается возникновением фотовольтаического эффекта. Заключается он в пространственном разделении образуемых светом разноимённых носителей тока из-за воздействия на них встроенного электрического поля [5]. Если при этом сопротивление внешней цепи незначительно по сравнению с сопротивлением образца, то во всей замкнутой цепи, содержащей освещаемый образец, потечёт электрический ток. Более сложные процессы происходят, если внешняя цепь разомкнута (так называемый режим холостого хода).
В этом случае поведение носителей тока в начальные моменты времени после освещения и в стационарном состоянии существенно отличается. В первые моменты времени фотовозбуждённые электроны под воздействием поля барьера образуют дрейфовый ток в сторону квазинейтральной части за пределами области пространственного заряда. Поскольку цепь разомкнута, они там накапливаются, понижая потенциал этого участка. Аналогично, за счёт дрейфового тока неравновесные дырки скапливаются с противоположной стороны. Потенциал этой области увеличивается. На контактах разомкнутого элемента образуется некоторая разность потенциалов, называемая э.д.с. холостого хода. Рекомбинационными процессами мы пренебрегаем, считая используемые материалы достаточно чистыми.
Если бы других процессов после освещения не происходило, фиксируемая вольтметром разность потенциалов в течение всего времени освещения практически неограниченно возрастала. Однако в полном соответствии с принципом Ле Шателье-Брауна, развиваясь, этот процесс возбуждает конкурирующие явления. Между областями с повышенным содержанием электронов и избыточным содержанием дырок возникает ещё одно, внутреннее, поле, направленное против поля барьера. Из-за взаимодействия этих полей высота потенциального барьера, а значит и напряжённость поля здесь, несколько понижается. Ровно настолько, чтобы возросший при этом диффузионный ток в точности скомпенсировал генерационный.
Оба типа носителей - и основные и неосновные в основном занимают нижние уровни энергии в соответствующих зонах. При понижении барьера, вследствие обычных градиентов концентраций, они устремляются в противоположные области. С течением времени, за достаточно быстрый период, вновь, как и в темноте, устанавливается равновесие между дрейфовыми и диффузионными токами, только на более высоком уровне.
Высота барьера при этом, а значит и фиксируемая извне стационарная разность потенциалов, контролируется только интенсивностью падающего света.
1.4. Особенности фотопроводимости, обусловленной
неоднородным освещением
При исследовании слоистой структуры для объяснения наблюдаемых изменений авторами [6] привлекалось представление о влиянии электрического по-ля омического контакта на фотопроводимость. Внутреннее по-ле омического контакта разделяет генерированные светом электроны и дырки так, что дырки движутся в объем селенида кадмия, а электроны переходят в сульфид кадмия (элект-род). При этом изменение проводимости низкоомного сульфи-да кадмия пришедшими электронами несущественно для про-дольного фоторезистора, в то время как дырки в селениде кадмия, захватываясь на центры чувствительности, вызывают гашение проводимости, в результате чего сопротивление слоя возрастает.
С увеличением длины волны излучения поглощение света происходит на большей глубине (вне слоя объемного заряда) или даже во всем объеме селенида кадмия.
Таким образом, концентрационный механизм коротковол-нового гашения проводимости, обусловленный разделением электронно-дырочных пар электрическим полем омического контакта, может играть доминирующую роль по сравнению с эффектом уменьшения подвижности электронов, хотя и не исключает последнего.
Коротковолновое гашение проводимости особенно сильно проявляется при положительной полярности на исследуемом электроде.
Следует отметить, что на ряде образцов величина фотопроводимости уменьшалась после длительного (в течение нескольких часов) пребывания образца в темноте. При этом уменьшалась и темновая проводимость. Указанное обстоятельство позво-ляет считать, что исследуемый эффект представляет в ряде случаев коротковолновое гашение остаточной проводи-мости. Остаточная проводимость в пленочных образцах может воз-никать вследствие неоднородности их структуры.
Рентгеноструктурные и электронно-микроскопические исследования показали, что образцы состоят из кристаллитов в форме стол-биков селенида кадмия гексагональной модификации, ориен-тированных осью с перпендикулярно подложке. На границе этих кристаллитов могут возникать слои, обедненные носите-лями заряда вследствие очувствления селенида кадмия ак-цепторной примесью меди в количествах, превышающих
пре-дел растворимости меди, что приводит к разделению элект-ронно-дырочных пар, генерированных светом, и появлению остаточной проводимости в каждом из таких столбиков (рис. 1.3., область 3).
Размеры кристаллов сравнимы с радиусом эк-ранирования. Линии электрического тока параллельны межкристаллитным прослойкам; отсутствие пересечения прослоек линиями тока создает благоприятные условия для запасания проводимости в области 3. При этом электроны и дырки, раз-деленные на барьерах, захватываются на глубокие уровни в областях 3 и 4 соответственно. Захват электронов в области 3 приводит к повышению ее проводимости, сохраняющемуся длительное время из-за на-личия рекомбинационного барьера на границе областей 3 и 4, препятствующего рекомбинации электронов с дырками, находящимися в области 4.
Уменьшение остаточной про-водимости происходит в об-ласти 5 вблизи омического контакта 1 в результате ре-комбинации «запасенных» на глубоких уровнях элек-тронов со свободными дыр-ками.
Таким образом, экспериментальные результаты показыва-ют, что объяснение эффектов изменения фотопроводимости в пленочных сэндвич-структурах из селенида и сульфида кадмия возмож-но только на основе рассмотрения условий неоднородного фотовозбуждения.
1.5 Обогащенный контактный слой в отсутствие тока
В соответствии с работой [7] рассмотрим распределение потенциала в случае обо-гащенного контактного слоя (euk < 0 и в несколько раз превышает кТ) (рис. 1.4). При этом удобно раздельно рассматривать область вблизи объемного заряда контакта 1 и остальную толщу полупроводника 2, где зоны можно считать уже неискривленными. Тогда мы имеем
(1.1)
и уравнение Пуассона:
где nk - концентрация электронов на поверхности.
Умножая обе части этого уравнения на /dx и интегрируя по получаем
Постоянная интегрирования С определяется из условия, что на границе обеих областей
?=uk, =0
Поэтому
Отсюда видно, что, вследствие условия (1.1), для области вблизи контакта постоянной С можно пренебречь по сравнению с пер-вым слагаемым. Поэтому
Так как мы рассматриваем обогащенный слой в электрон-ном полупроводнике, то ? < 0 и увеличивается по абсолютной величине с увеличением х, а, следовательно, нашей задаче соот-ветствует знак минус. Интегрируя это уравнение еще раз по х в пределах от 0 до х, находим распределение потенциала в виде
(1.2)
где а есть характеристическая длина:
С точностью до множителя 2-1/2 это есть не что иное, как длина экранирования, в которой, однако, концентрация электронов в глубине образца п0 замене-на ее значением на контакте пк. Таким образом, потенциал вблизи контакта из-меняется по логарифмическому закону. Распределение концентрации электронов выражается соотношением
(1.3)
Вдали от контакта (область 2)
?=uk,
Распределение потенциала и концентрации электронов в слое по-лупроводника между двумя одинаковыми металлическими электродами с обогащенными слоями схематически показано на рис. 1.4.
Таким образом, прилегающие к металлическим электродам слои полупроводника, толщина которых ~ а, могут “заливаться” носителями заряда. При этом концентрация носителей вблизи контактов, как показывает формула (1.3), не зависит от их концентрации в глубине полупроводника, которая может быть как угодно мала (изолятор). Поэтому электропроводность такого контакта может быть велика, даже если удельная электропроводность полупроводника (в отсутствие контакта) ничтожно мала, например, в случае широкозонных CdS, CdSe, ZnS и т.д.
ГЛАВА 2
Энергетическая структура омического контакта в присутствии неравномерно распределенных электронных ловушек
2.1. Влияние ловушек на структуру барьера.
Предварительный анализ
В п. 1.5 рассмотрен контакт металла с полупроводником в общем случае. Если он формируется для высокоомного полупроводника, то в силу значительного отличия проводимостей практически вся область пространственного заряда (ОПЗ) находится в его приконтактном слое. Если работа выхода для металла много меньше работы выхода для полупроводника, то скачка энергии ?Ес(0) не будет. Искривление дна зоны начинается при х=0 (рис. 2.1) и ?к=F.
2
Пусть в такой полупроводник введены электронные ловушки Nt , концентрация которых уменьшается от поверхности вглубь объема по закону
(2.1)
где Nt0 - это их концентрация на геометрической поверхности, а l0 - характерная длина, показывающая, на каком расстоянии число ловушек убывает в е раз.
Энергия активации этих ловушек Ес-Еt. Тогда, непосредственно у контакта (область I рис. 2.1), ловушки оказываются под уровнем Ферми. Такие ловушки сильно заполнены электронами независимо от концентрации свободного заряда. На самой поверхности расстояние их от энергии Ферми и, следовательно, заполнение будет максимальным. Поэтому в точке х=0 появление таких ловушек концентрации свободных электронов и распределение энергии не поменяют. По-прежнему они описываются формулами (1.2) и (1.3).
Как видно из рис. 2.1, чем больше глубина ловушек Ес-Еt, тем шире область I, обогащенная электронами, поскольку до больших координат х ловушки находятся под - и в области уровня Ферми.
При этом, как будет подробнее показано в п.2.2, чем больше первоначальная концентрация ловушек Nt0, тем круче уходит вверх зависимость . Оба эти фактора, действуя совместно, должны обеспечивать большую высоту образовавшегося барьера (см. п.2.2).
Наоборот, в глубине объема при x > L1 появление электронных ловушек ситуацию изменит существенно. Ловушки заполнены частично и способны захватить дополнительный заряд. При этом концентрация свободного заряда, первоначально составляющего п0 (кривая 1 рис. 2.1а), должна уменьшаться, что сопровождается увеличением расстояния от дна зоны проводимости до уровня Ферми.
Рассмотрим край фронта распространения примеси Nt (область III рис 2.1а). Концентрация ловушек в области x = L1 исчезающе мала (см. формулу 2.1) поэтому в целом она остается электронейтральной. Часть свободного заряда переходит на ловушки. Уравнение электронейтральности в этом случае выглядит так:
(2.2)
С учетом того, что численно концентрация ионизированных доноров равна n0, из (2.2) получаем
где ?(x) > 0 небольшое возмущение края зоны проводимости. Тогда, раскладывая в ряд экспоненту, определяем:
откуда
(2.3)
По мере уменьшения координаты x в сторону поверхности, значение энергии края зоны проводимости возрастает, хотя и не очень значительно. Даже если весь свободный заряд n0, перейдет на ловушки
(2.4)
то ?=kT (на границе областей II и III)
Указанных процессов на краях ОПЗ достаточно для предсказания изменения распределения потенциала. Если в глубине объема кривая потенциала Ес(x) устремляется вверх, а на самом контакте с металлом приходит в ту же точку, где находилась без учета ловушек, то в целом профиль ОПЗ должен иметь вид колоколообразного максимума (кривая 2 рис. 2.1а). Причем его ширина контролируется только глубиной проникновения электронных ловушек, определяемой технологическими факторами обработки кристалла.
2.2. Распределение энергии в приконтактных слоях
полупроводника с ловушками для электронов
Определим профиль барьера в области I рис. 2.1а с помощью уравнения Пуассона
(2.5)
где ? - энергия (поэтому в коэффициенте перед квадратной скобкой применено е2). = n0<< nk в соответствии с данными 2.1. Используя выражения (1.4) и (2.1) формула (2.5) приобретает вид
(2.6)
Отметим, что отрицательные значения второй производной указывают на вогнутость функции ?1 в пределах области I.
Первое интегрирование (2.6) приводит к выражению
(2.7)
После второго интегрирования
(2.8)
Значения констант С1 и С2 можно определить из сравнения с распределением (1.2) для чистого полупроводника.
При использовании для контактов металлов с возможно малой работой выхода (1.1) значение скачка на границе ?E(0)>0. В этом случае при х=0 Eс-F=0 и
nk ? Nc = 1019см-3 (2.9)
Согласно [9] величина трансляции периодической решетки, например, для CdS равна 4,13A для структуры вюрцита и 5,82A для структуры цинковой обманки. Примем для оценочного параметра величину 5A. Тогда для подрешетки кадмия она составляет ~ 10A. Объем такой ячейки составляет ~10-21см3. Это дает концентрацию кадмия на поверхности ~ 1021см-3. Неизвестно, сколько атомов кадмия взаимодействует с плазмой коронного разряда в предполагаемом ходе создания ловушек (см.п.3.1.). Принимая это количество за 0,1?1% от общей величины из сравнения с (2.9) получаем, что на поверхности справедливо
Nt0 ?nk (2.10)
Учитывая также расчеты, приведенные в п. 2.1, относительно заполнения ловушек без изменения концентрации свободного заряда, будет справедливо
или из (2.7) и (1.2)
откуда при х=0 получаем
и (2.11)
Величину константы С2 в (2.8) легко найти из условия ?1 (0)=0. Из него следует (см. 2.8).
откуда
(2.12)
Окончательно (2.8) с учетом (2.11) и (2.12) приобретает вид
(2.13)
Полученное выражение слишком громоздко для дальнейшего анализа. Поэтому будем считать, что величина l0 в распределении ловушек достаточно велика, а точка сшивания с функцией ?2 (x) (т.е. ширина области I) лежит при координате, меньшей радиуса экранирования а.
Тогда и
Из (2.13) получаем выражение
(2.14)
на которое, как и следовало ожидать, не влияют параметры ловушек l0 и Nt0. В приповерхностном слое распределение энергии в барьере представлено практически прямой линией с наклоном 2kT/a.
При этом график ?1(x) лежит выше кривой 1.рис.2.1а. Это легко понять, если оценить скорость примеси с координатой:
Из (1.4) и (2.1) имеем
и
Откуда при х=0
для 2 l0 >a и принимая во внимание (2.10). Т.е. с самого начала с ростом координаты концентрация свободного заряда падает быстрее концентрации ловушек.
2.3. Структура барьера в истощенном слое
В центральной части барьера свободный заряд практически отсутствует и концентрация электронов на ловушках значительно превышает число ионизированных доноров, поскольку для этих расстояний х число самих ловушек еще достаточно велико. Тогда ; n(x) в этом случае плотность заряда
где f(x) - вероятность заполнения ловушек, в соответствии с формулой Ферми - Дирака, равная
Здесь учтено, что энергия активизации ловушек в глубине полупроводника Et-E>>kT и соответственно
Преобразуя выражение
,
получим
где первая экспонента, связанная с энергией активизации ловушек, с координатой не изменяется, а показатель второй экспоненты зависит от х.
Окончательно
и уравнение Пуассона имеет вид
(2.15)
где (2.16)
Видно, что во всей этой области вторая производная отрицательна. Кривая вогнута. Используем подстановку
(2.17)
(2.18)
(2.19)
Домножая (2.15) на и используя (2.18) имеем
(2.20)
Домножим (2.20) на:
откуда
или
После интегрирования
(2.21)
Значение С1 можно получить в положении максимума, где = 0. Тогда из (2.18) и (2.21)
На восходящей кривой, где x<x max и ?< ? max справедливо (см.2.17)
(2.22)
Для достаточно резких барьеров на ниспадающей части величины x и x max одного порядка, а ?< ? max . поэтому условие (2.22)остается справедливым и здесь. В целом формула (2.21) учитывая (2.22) приобретает вид
откуда
(2.23)
В соответствии с (2.13) на восходящей части кривой
(2.24)
На спадающей части для всех
(т.е. медленного спада), выражение (2.24) остается в силе. Тогда в (2.23) следует оставить знак «-». Для него
Или
(2.25)
Интегрируя (2.19) определяем
(2.26)
Подставляя (2.12) в (2.20) и упрощая выражение, получаем
Или
Окончательно
(2.27)
2.4. Детализация явного вида функции
распределения энергии
Для удобства выпишем сшиваемые функции в точке х0.
(2.28)
(2.29)
где
Из равенства производных в точке сшивания
получаем
оттуда для больших l0, когда
(2.30)
Отсюда
(2.31)
Подставляя его в выражение ?1(х0)= ?2(х0) находим (см.2.28 и 2.29):
(2.32)
Во втором слагаемом справа в (2.32) учтена зависимость (2.30). Сокращая на 2kT и приведя подобные, получаем:
или для
(2.33)
Если нарастающая часть барьера достаточно резкая, то значение х0 в (2.31) не велико по сравнению с а. В этом случае из сравнения (2.31) и (2.33) следует и окончательно
(2.34)
(см. 2.27)
Как видно из (2.34) в максимуме, когда
(2.35)
Ширина нарастающей части барьера и, следовательно, напряженность поля здесь контролируется параметрами распределения ловушек 2l0. подставляя (2.35) в (2.34) получаем значение функции ?2 в максимуме:
(2.36)
Чем больше 2l0, тем выше барьер.
Зависимость от начальной концентрации ловушек Nt0 и их энергии активации Eс - Et определяется величиной . Из (2.36) следует, что с увеличением этих параметров высота барьера также возрастает линейно пропорционально (Eс - Et) и логарифмически пропорционально Nt0.
Общую ширину ОПЗ можно найти из (2.29) для значительных координат х, когда ?2(х)=0. В этом случае после сокращения на 2kT получаем
(2.37)
Здесь учтено, что по условиям задачи ловушки диффундируют дальше L1 и уже в максимуме координата xmax>a. Уравнение (2.32) не позволяет в явном виде получать зависимость L2(l0, A), но допускает выявить тенденции этой зависимости с помощью методов, заимствованных из теории чисел.
Представим (2.37) в виде
(2.38)
Пусть не изменяется тип ловушек (т.е. фиксируется А), но за счет технологических приемов возрастает l0 . В этом случае, поскольку правая часть не изменяется, а знаменатель первого слагаемого увеличивается, значение L2 должно возрастать, хотя и не пропорционально. Если бы L2 не изменялось, левая часть (2.38) тоже уменьшалось. Это следует из
Наоборот, пусть l0=const, а величина А увеличивается. Тогда левая часть в (2.38) должна возрастать. Поскольку логарифмическая функция y=lnL2 изменяется медленнее линейной , в целом L2 увеличивается. С ростом концентрации ловушек на поверхности Nt0 и их энергии активации Eс - Et ширина ОПЗ увеличивается.
Отметим при этом, что для такого вывода важно одновременное увеличение обоих параметров. Принципиально возможна ситуация когда более глубоких ловушек (больше) на геометрической поверхности мало (Nt0 меньше). Поскольку величина Nt0 управляется технологически, этой конкуренции можно избежать.
2.5. Энергетический профиль барьера в объеме полупроводника
Явный вид восходящей части барьера ?1(х) получен в зависимости от параметров a, nk (см. п.1.5-2.1) на поверхности полупроводника на основе допущения (2.10) (см. п.2.2) справедливого также на поверхности. После сшивания в точке х0 явный вид функции ?2(х) в глубине объема также оказался связанным с состоянием поверхности (см. 2.5).
Стандартная процедура сшивания в глубине объема функций ?2(х) и ?(х) [см. формулы(2.7) и (2.4)]
приводит к слишком сложной системе уравнений
(2.39)
которую можно решить только численными методами.
И даже весьма естественное предположение, что в точке сшивания х00 весь свободный заряд n0 переходит на ловушки (см. ф-лу 2.4)
не улучшает ситуацию, поскольку превращает второе уравнение (2.39) в бессмысленное
Поэтому был применен искусственный прием. Значение функции в максимуме при х=хm
откуда
и
что после подстановки в ?2(х) дает
и в максимуме (х=хm)
(2.40)
Видно, что чем ближе к границе раздела образуется барьер (хm убывает), тем он выше. С ростом концентрации ловушек Nt0 и их глубины Eс - Et (т.е. А возрастает) барьер тоже увеличивается. Что совпадает с полученным ранее.
В точке сшивания барьерной функции ?2(х) с функцией в квазинейтральной области ?(х) как было показано в п.2.1 ??kT. Поэтому можно считать, что х00 определяет общую ширину ОПЗ: х00=L2. Получаем:
или
причем L2>>l0 и, следовательно
тогда
(2.41)
Из (2.40) следует, что для высокого барьера требуются минимальные значения xm. Тогда, согласно (2.41)
или
после логарифмирования
(2.42)
поскольку из (2.36) следует
или
(2.42а)
Ширина области пространственного заряда увеличивается с ростом 2l0, что также совпадает с полученным ранее.
2.6. Влияние освещения на профиль барьера
При освещении полупроводника за счет неравновесных носителей степень заполнения электронных ловушек увеличивается. Будем считать, что интенсивность света достаточно велика. Тогда ловушки уже заполнены полностью и распределение заряда на них полностью совпадает с распределением самих ловушек.
В то же время обычного фотовольтаического уменьшения барьера из-за влияния зарядов свободных носителей не происходит.
Отметим, что в области I и III, очевидно, освещение ситуацию не поменяет, поскольку, как и раньше, ловушечные уровни уже заполнены, в первом случае потому что находятся ниже уровня Ферми, а в третьем, потому что их мало.
Остается решить уравнение Пуассона для второй области
(2.43)
в котором, как и в темноте, тем более справедливо и
Решением (2.43) будет
(2.44)
Значение С2 можно определить, используя тот же прием, который мы применили в п.2.4. Для очень больших значений х на краю распределения ловушек xL2 значение функции ?2=0. Отсюда
(2.45)
Для всей первой области и возрастающей части барьера в силу x<L2 экспоненциальной частью (2.45) можно пренебречь по сравнению с первым слагаемым в (2.44). Имеем
Константу С1 найдем из условия сшивания в точке х0, причем сама координата х0 на свету уже может быть другая:
С учетом (2.14)
(2.46)
Из второго уравнения (2.46)
(2.47)
Подставляя это значение в первое уравнение системы (2.46) и принимая во внимание
(2.48)
находим
(2.49)
применяя (2.48) еще раз из (2.49) определяем
откуда
Тогда (2.47) можно записать как
или, принимая L2>l0 окончательно
и (2.50)
В максимуме, когда
Откуда
и (2.51)
Видно, что, как и в темноте, с увеличением l0 в распределении ловушек положение максимума смещается вправо.
Подставляя (2.51) в (2.50) находим после преобразования
(2.52)
Освещение не меняет ширины области пространственного заряда, которая, как и раньше, контролируется только глубиной распространения ловушек. Тогда мы вправе применить (2.37)
в котором константа А определяется (2.16) как
Тогда выражение в квадратных скобках в (2.52) имеет вид
С учетом этого (2.52) упрощается:
(2.53)
величина a<l0 и L2>l0. Полагая для простоты сравнения
(2.54)
видим, что первое слагаемое в (2.53) почти точно соответствует первой компоненте в темновой функции (2.36)
с учетом (2.16) расписывается в виде
(2.55)
Из совместного рассмотрения (2.51), (2.35) и (2.54) следует
В таком случае (2.55) представим как
(2.56)
где В - некоторая константа меньшая или близкая к единице.
Формула (2.56) позволяет сравнить второе слагаемое с выражением в формуле (2.53). С учетом того, что и к тому же управляется технологически, получим, что на свету барьер оказывается несколько выше.
ГЛАВА 3
Фотоэлектрические свойства кристаллов, обработанных в газовом разряде
3.1 Технология легирования образцов
Обычно введение леганта в полупроводник производится нанесением соответствующего вещества на поверхность в избыточных количествах с последующим разогревом. При этом за счет градиента концентрации стандартным механизмом диффузии вещество транспортируется вглубь полупроводника.
В работе [2] описан способ создания электронных ловушек на поверхности полупроводника за счет обработки ее газовым разрядом. Преимущества этой методики связаны с присутствием электрического поля при технологических операциях. Варьируя величину и направление этого поля можно контролировать процесс внедрения дефектов и профиль их распределения.
Повышение температуры в некоторых пределах облегчит этот процесс. При этом существуют некоторые пороговые значения разогрева, выше которых за счет энергии активации ловушки теряют заряд и перестают реагировать на приложенное поле. Очевидно, что в этом случае преимуществом обладают глубокие ловушки, позволяющие за счет теплового возбуждения решетки увеличивать в большей мере подвижность примесных ионов.
Возбуждение полупроводника собственным светом также активизирует процесс легирования, поскольку в этом случае должна возрастать доля ловушек, захвативших заряд.
В [8] приводятся данные, указывающие на значительную миграцию ионов примеси в широкозонных полупроводниках в полях порядка 105 В/м.
Комбинированное воздействие теплом и светом может существенно понизить эту напряженность поля для формирования в контролируемых условиях распределения примеси вида (2.1б).
Помимо создания электронных ловушек и управляемого процесса внедрения их в объем полупроводника, предлагаемый метод обработки в коронном разряде способствует образованию доноров на поверхности образца [3]. То же электрическое поле, которое способствует оттоку электронных ловушек, аккумулирует доноры в приповерхностных слоях, увеличивая их проводимость. При этом возникает возможность производить обработку кристаллов с уже нанесенными контактами и в том же цикле производить измерения без напуска воздуха в камеру. Хотя часть поверхности полупроводника непосредственно под контактом в этом случае и не подвергается бомбардировке ионами плазмы, за счет повышенной поверхностной проводимости носители тока растекаются от контакта, а затем устремляются сквозь образец к противоположному контакту. При этом линии тока совпа ...........
Страницы: [1] | 2 |
|