13
Рассчётно-графическая работа С-7
«Определение реакции опор твёрдого тела»
|
Cилы, кН
|
Размеры, см
|
|
Q
|
G
|
a
|
b
|
c
|
R
|
r
|
|
5
|
3
|
20
|
15
|
10
|
30
|
40
|
|
|
Результаты вычислений приведены в таблице:
|
Силы, кН
|
|
RA
|
RB
|
xA
|
zA
|
xB
|
zB
|
|
3,56
|
3,36
|
3,53
|
0,67
|
-2,41
|
2,33
|
|
|
При нахождении получилось, что значение составляющей по оси отрицательно. Это значит, что при расставлении действующих на данную систему сил было выбрано неверное направление. В итоге правильное построение будет выглядеть следующим образом:
«Определение скорости и ускорения точки по заданным уравнениям её траектории».
|
Уравнения движения
|
t1,c
|
|
x=x(t)
|
y=y(t)
|
|
|
|
|
2
|
|
|
1. Скорость
В общем случае для пространственной системы координат будем иметь:
=>
Для нашего случая уравнения для составляющих по осям координат будут иметь следующий вид:
После дифференцирования получим:
Найдём полную скорость точки в момент времени :
2. Ускорение
В общем случае для пространственной системы координат будем иметь:
=>
Для нашего случая уравнения для составляющих по осям координат будут иметь следующий вид:
После дифференцирования получим:
Найдём полное ускорение точки в момент времени :
С другой стороны ускорение можно найти по формуле:
, где
тангенциальное ускорение (касательная составляющая полного ускорения), а нормальная составляющая полного ускорения, которые можно найти по формулам:
,
где - радиус кривизны траектории в искомой точке.
-0,0058 при =2 с.
Тогда найдётся по формуле:
Подставив значения, получим:
Найдём уравнение движения точки. Для этого выразим из второго уравнения переменную времени () и подставим полученное выражение в первое уравнение:
Получившееся уравнение () является гиперболой.
Найдём начальное положение точки. Для этого подставим в уравнения значение .
Чтобы определить в какую сторону происходит движение необходимо подставить в уравнение движения время, отличное от (например ).
движение происходит по левой ветви гиперболы в направлении, указанном на рисунке.
Расставим на графике движения векторы скорости, ускорения и векторы полной скорости и ускорения:
|
,
|
,
|
,
|
,
|
,
|
,
|
,
|
,
|
,
|
|
0,1875
|
3
|
3,0059
|
-0,0938
|
0
|
-0,0058
|
0,094
|
0,0938
|
96,12
|
|
|
Дано:
m1 = m
m2 = 2m
m3 = 9m
R3 = 0,3 м
i3? = 0,2 м
? = 30
f = 0,12
? = 0,25 см
s = 1,5 м
Найти:
V1 = ?
Решение:
По теореме об изменении кинетической энергии системы:
(т.к. система состоит из абсолютно твердых тел и нерастяжимых нитей)
Кинетическая энергия системы равна:
Сумма работ внешних сил:
м/с
Интегрирование дифференциальных уравнений
Д-1 вар. 9
Лыжник
Vв
13
h
d
Дано
=15 ; ; ?=0,1 ?=0,3 ;?=45?
h=42 ?
Найти Va, Vв
Решение
mX=Xi 1 Fтр=fN
mX=Gsin-Fcoпр N=Gcos
mX=Gsin-fGcos
X=gsin-fgcos
X=(g(sin-fcos) t+ C1
X=(g(sin-fcos)/2) t2+ C1t+ C2
При нормальных условиях : t=0 x=0
X=Vв X= C2=0; C1=Va
X=g (sin-fcos) t+ C1 X= (g (sin-fcos)/2) t2+С1*t
X=Vв X=L
Vв=g (sin?-?*cos?)?+Va2
L= ((g(sin?-?*cos?)?)/2)? +С1*t
Рассмотрим движение лыжника от точки В до точки С, составим дифференциальное уравнение его движения.
Mx=0 my=0
Начальные условия задачи: при t=0
X0=0 Y0=0
X0=Vв*cos? ; Y0=Vв*sin?
Интегрируем уравнения дважды
Х=C3 Y=gt+C4 2
X= C3t+ C5 Y=gt /2+C4t+C6
при t=0
X=C3; Y0=C4
X=C5; Y0=C6
Получим уравнения проекций скоростей тела.
X=Vв*cos? , Y=gt+Vв*sin?
и уравнения его движения
X=Vв*cos?*t Y=gt /2+Vв*sin?*t
Уравнение траектории тела найдем , исключив параметр t из уравнения движения получим уравнение параболы.
Y=gx /2(2Vв*cos?) + xtg?
Y=h x=d h=tg?*d d=h/tg?
Найдём Vв из уравнения 2 2 2
Y=gx /2(2Vв*cos?) + xtg?
Vв=18м/с и найдём Va
Vв=g(sin?-?*cos?)?+Va
Va=11,3м/с
Ответ: Va=11,3м/с Vв=18м/с
Задание Д.3
Исследование колебательного движения материальной точки
Дано:
Найти: Уравнение движения
Решение:
Применим к решению задачи дифференциальное уравнение движения точки. Совместим начало координатной системы с положением покоя груза, соответствующим статической деформации пружины, при условии что точка В занимает свое среднее положение . Направим ось вниз вдоль наклонной плоскости. Движение груза определяется по следующему дифференциальному уравнению:
,
где -сумма проекций на ось сил, действующих на груз.
Таким образом
Здесь ,
где - статическая деформация пружины под действием груза; -перемещение точки прикрепления нижнего конца пружины, происходящее по закону .
Статическую деформацию пружины найдем из уравнения, соответствующего состоянию покоя груза:
т.е.
Откуда
Дифференциальное уравнение движения груза примет вид:
или после преобразования
Разделив все члены уравнения на получим:
Введем обозначения:
Получаем, что
Имеем неоднородное уравнение
,
где - общее решение, соответствующего однородного уравнения;
- частное решение данного неоднородного уравнения.
Общее решение однородного уравнения имеет вид:
Частное решение неоднородного уравнения:
Общий интеграл
Для определения постоянных интегрирования найдем, кроме ого, уравнение для :
и используем начальные условия задачи.
Рассматриваемое движение начинается в момент , когда деформация пружины является статической деформацией под действием груза.
Таким образом, при
Составим уравнения и для :
Откуда
Тогда уравнение движения груза примет вид:
Ответ:
Применение теоремы об изменении количества движения к исследованию движения механической системы.
Дано:
Найти: Скорость .
Решение:
На механическую систему действуют внешние силы: - сила сухого трения в опоре А; - силы тяжести тел 1, 2 и 3; -сила нормальной реакции в точке А; -реактивный момент в опоре В.
Применим теорему об изменении количества движения механической системы в дифференциальной форме. В проекциях на оси координат
, (1)
где - проекции вектора количества движения системы на оси координат; - суммы проекций внешних сил на соответствующие оси.
Количество движения системы тел 1, 2 и 3
(2)
где
. (3)
Здесь - скорости центров масс тел 1, 2, 3; - соответственно переносные и относительные скорости центров масс.
Очевидно, что
(4)
Проецируя обе части векторного равенства (2) на координатные оси, получаем с учетом (3) и (4)
(5)
где - проекция вектора на ось ;
Проекция главного вектора внешних сил на координатные оси
(6)
Знак « - » соответствует случаю, когда , а знак «+» - случаю, когда .
Подставляя (5) и (6) в (1), получим
(7)
Выразим из второго уравнения системы (7) величину нормальной реакции и подставим ее в первое уравнение. В результате получим
при ; (8)
при . (9)
где
Рассмотрим промежуток времени , в течении которого тело 1 движется вправо . Из (8) следует, что
,
где С- постоянная интегрирования, определяемая из начального условия: при
.
При скорость тела 1 обращается в ноль, поэтому .
Найдем значения и :
Т.е. , . Значит, тело при начинает двигаться в обратном направлении. Это движение описывается дифференциальным уравнением (9) при начальном условии: ; (10)
Интегрируя (9) с учетом (10), получим, при
(11)
При получим из (11) искомое значение скорости тела 1 в момент, когда
.
Точное решение задачи. Воспользовавшись методикой, изложенной выше, получим дифференциальное уравнение движения тела 1:
при (12)
; при , (13)
где
Из (12) и учитывая, что получаем, при
откуда или
Из (13) и учитывая, что получаем, при
При находим
Ответ: .
|