Главная   Добавить в избранное Компенсирующие устройства и напряжение питающей линии ГПП вагоноремонтного завода | курсовая работа


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней

 



Компенсирующие устройства и напряжение питающей линии ГПП вагоноремонтного завода - курсовая работа


Категория: Курсовые работы
Рубрика: Физика и энергетика
Размер файла: 513 Kb
Количество загрузок:
24
Количество просмотров:
1799
Описание работы: курсовая работа на тему Компенсирующие устройства и напряжение питающей линии ГПП вагоноремонтного завода
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



- 2 -

Федеральное агентство образования

Политехнический университет

Электротехнический институт

Электроснабжение промышленных предприятий

Кафедра ЭСПП

Технико-экономическое обоснование выбора

компенсирующих устройств и напряжения питающей линии ГПП

вагоноремонтного завода

Курсовой проект

по дисциплине “Специальные вопросы ЭСПП”

Выполнил: студент гр

Проверил: профессор

Содержание

I. Технико-экономическое обоснование выбора напряжения

питающей линии ГПП вагоноремонтного завода

1. Расчет по суточному графику электрических нагрузок

вагоноремонтного завода средней и максимальной нагрузок

2. Построение годового графика по продолжительности и

определение времени использования максимума нагрузки

3. Выбор трансформаторов на ГПП

4. Определение экономически целесообразного режима работы трансформаторов

5. Распределение нагрузки между параллельно работающими трансформаторами

6. Годовые потери мощности и электроэнергии в трансформаторах

7. Технико-экономическое обоснование выбора напряжения питающей линии ГПП

7.1 Выбор и обоснование схемы внешнего электроснабжения

7.2 Выбор сечения проводников для двух классов напряжений

7.3 Технико-экономические сравнения рассматриваемых вариантов ВЛЭП

8. Технико-экономические расчеты по выбору варианта ГПП

8.1 Капитальные затраты на трансформаторы и стоимость потерь

электроэнергии в них

8.2 Полные затраты по вариантам

9. Выбор оптимального варианта схемы внешнего электроснабжения

II. Технико-экономическое обоснование выбора компенсирующих

устройств в системе электроснабжения вагоноремонтного завода

1. Выбор схемы электроснабжения предприятия для определения

реактивной мощности, подлежащей компенсации

2. Составление баланса реактивной мощности и выбор двух

вариантов ее компенсации

3. Технико-экономическое сравнение вариантов

4. Распределение мощности батарей конденсаторов по узлам

нагрузки кузнечного цеха

Заключение

Литература

I. Технико-экономическое обоснование выбора напряжения питающей линии ГПП вагоноремонтного завода

1. Расчет по суточному графику электрических нагрузок вагоноремонтного завода средней и максимальной нагрузок

Выбираем характерный суточный график электрических нагрузок согласно отрасли близкой для нашего предприятия. Принимаем суточный график химического комбината.

Мощность каждой ступени:

где: и - расчетные активная и реактивная мощности предприятия со стороны высшего напряжения трансформаторов ГПП.

Таким образом, для характерного суточного графика, представленного на рис.1 получим:

Аналогично для других ступеней. Результаты расчетов активных и реактивных мощностей ступеней приведены в таблице 1.

Таблица 1

Ступень

часы

Pст.

часы

Qст.

1

0-1

6723,8

0-1

5473,6

2

1-3

6174,9

1-3

5473,6

3

3-4

6174,9

3-4

5706,5

4

4-4,5

6655,2

4-4,5

5706,5

5

4,5-8

6723,8

4,5-8

5706,5

6

8-10

6861

8-10

5823

7

10-11

6655,2

10-11

5590

8

11-14

6312,1

11-14

5590

9

14-14,5

6586,6

14-14,5

5590

10

14,5-15

6586,6

14,5-15

5823

11

15-17

6861

15-17

5823

12

17-19

6312,1

17-19

5590

13

19-21

6174,9

19-21

5357

14

21-24

6312,1

21-24

5590

Таким образом, получаем суточный график:

Рис.1 Характерный суточный график электрических нагрузок

Рис. 2 Годовой график нагрузки по продолжительности использования активной мощности

2. Построение годового графика по продолжительности и определение времени использования максимума нагрузки

На основании суточного графика построим годовой график по продолжительности (рис. 2).

Потребляемая активная и реактивная суточная энергия:

Средняя полная мощность предприятия за сутки:

Из годового графика нагрузки по продолжительности определяем :

3. Выбор трансформаторов на ГПП

Учитывая наличие потребителей I и II категории, устанавливаем на ГПП два трансформатора.

Из суточного графика нагрузок завода определяем:

Определяем коэффициент заполнения графика нагрузки:

По и с помощью номограммы [1] определяем коэффициент кратности допустимой перегрузки:

Определяем номинальную мощность трансформатора:

Намечаем для дальнейшего рассмотрения трансформаторы двух номинальных мощностей:

и

При этом коэффициент загрузки трансформатора:

Определяем допустимую систематическую перегрузку трансформаторов в соответствии с суточным графиком:

За счет неравномерности годового графика нагрузки (недогрузка в весенне-летний период) может быть допущена дополнительная перегрузка, но не более 15%:

Определяем суммарную допустимую перегрузку трансформаторов в нормальном режиме при максимальной нагрузке завода:

Проверяем возможность работы трансформатора в послеаварийном режиме при перегрузке 40% и обеспечении потребителей I и II категории:

,

где - доля потребителей I и II категории.

4. Определение экономически целесообразного режима работы трансформаторов

Если на подстанции установлены трансформаторы, имеющие разные характеристики или различные мощности, то для выбора экономичного режима их работы пользуются кривыми приведенных потерь, которые учитывают потери мощности в цепи трансформатора с учетом потребления трансформаторами реактивной мощности. Потребление реактивной мощности трансформаторами увеличивает потоки мощности в звеньях системы и вызывает в них повышение потерь активной мощности.

Это повышение потерь учитывается с помощью экономического эквивалента реактивной мощности.

В дальнейших расчетах будем рассматривать два варианта значений напряжения питающей линии ГПП химического комбината: 35 кВ и 110 кВ.

Для UНОМ=35 кВ КЭК= 0,12

UНОМ=110 кВ КЭК= 0,1

Вариант 1:

· ТМН - 4000/35

Приведенные потери:

, где

(при ) - экономический эквивалент реактивной мощности

, где

, где

Суммарные приведенные потери для первого трансформатора:

Суммарные приведенные потери для второго трансформатора:

Суммарные приведенные потери для двух трансформаторов:

Кривые приведенных потерь для одного работающего трансформатора и для двух трансформаторов строятся на основе полученных уравнений.

Для построения кривых приведенных потерь составим таблицу изменения :

Таблица 2

,кВт

,кВт

,кВт

0

11,5

11,5

23

1000

15,84

16,07

25,23

2000

28,88

29,78

31,91

3000

50,59

52,62

43,05

4000

81

84,6

58,65

5000

120,09

125,72

78,7

6000

167,88

175,98

103,21

7000

224,34

235,37

132,18

8000

289,5

303,9

165,6

8998,9

363,26

381,48

203,43

10000

445,87

468,38

245,81

Рис. 3 Графики приведенных потерь для варианта 1 (;)

1 - работают два трансформатора; 2 - работает первый трансформатор; 3- работает второй трансформатор;

Определим аналитически мощность (), при которой целесообразно переходить от одного трансформатора к двум:

Погрешность между графическим и аналитическим способами составляет:

Для остальных вариантов расчет аналогичен, результаты расчетов сводим в таблицы.

Вариант 2:

· ТМН - 6300/35

Таблица 3

,кВт

,кВт

,кВт

0

16

16

32

1000

18,6

18,74

33,34

2000

26,4

26,97

37,34

3000

39,4

40,69

44,02

4000

57,6

59,89

53,37

5000

81

84,58

65,4

6000

109,61

114,75

80,09

7000

143,41

150,41

97,45

8000

182,41

191,55

117,49

8998,9

226,56

238,13

140,17

10000

276,02

290,30

165,58

Погрешность между графическим и аналитическим способами составляет:

Рис. 4 Графики приведенных потерь для варианта 2 (;)

1 - работает два трансформатора; 2 - работает первый трансформатор; 3- работает второй трансформатор;

Вариант 3:

· ТМН - 4000/110

Таблица 4

,кВт

,кВт

,кВт

0

12,5

12,5

25

1000

17,19

17,44

27,41

2000

31,95

32,25

34,63

3000

54,69

56,94

46,66

4000

97,5

91,5

63,5

5000

129,65

135,94

85,16

6000

181,25

190,7

111,74

7000

242,19

255,05

143,06

8000

312,5

329,3

179,2

8998,9

392,1

413,35

220,11

10000

481,25

507,5

265,94

Рис. 5 Графики приведенных потерь для варианта 3 (;)

1 - работают два трансформатора; 2 - работает первый трансформатор; 3- работает второй трансформатор;

Вариант 4:

· ТМН - 6300/110

Таблица 5

,кВт

,кВт

,кВт

0

16,54

16,54

33,08

1000

19,32

19,48

34,51

2000

27,64

28,31

38,8

3000

41,52

43,02

45,94

4000

60,94

63,61

55,95

5000

85,92

90,09

68,81

6000

116,45

122,45

84,54

7000

152,53

160,7

103,12

8000

194,16

204,83

124,56

8998,9

241,28

254,79

148,83

10000

294,07

310,75

176,01

Рис. 6 Графики приведенных потерь для варианта 4 (;)

1 - работают два трансформатора; 2 - работает первый трансформатор; 3- работает второй трансформатор;

6. Годовые потери мощности и электроэнергии в трансформаторах

Потери мощности в трансформаторах складываются из потерь активной и реактивной мощностей.

Потери активной мощности складываются из потерь на нагрев обмоток трансформатора, зависящих от тока нагрузки, и из потерь на нагрев стали сердечника магнитопровода (перемагничивание и вихревые токи), не зависящих от нагрузки.

Потери мощности в трансформаторе могут быть определены по справочным данным следующим образом:

Потери электроэнергии:

, где

- число часов использования максимальных потерь

- время включения трансформатора

- коэффициент загрузки трансформатора

Рассмотрим два случая:

1) Когда работает один трансформатор. В этом случае: , где

- мощность i-ой ступени графика нагрузки

-паспортная мощность трансформатора

2) Когда работают оба трансформатора, но раздельно, то есть секционный выключатель разомкнут.

Коэффициент загрузки для раздельно работающих трансформаторов:

, учитываем то, что трансформаторы загружены равномерно

Так как минимальная мощность ступени суточного графика нагрузки равна 8174 кВА и больше мощности, при которой целесообразно переходить от одного трансформатора к двум () во всех рассмотренных выше четырёх случаях, то получается, что на ГПП всё время работают оба трансформатора.

Вариант 1:

· ТМН - 4000/35

Приведем пример расчета годовых потерь мощности и электроэнергии в трансформаторах для данного варианта:

Коэффициент загрузки для раздельно работающих трансформаторов:

Потери мощности для раздельно работающих трансформаторов:

Потери электроэнергии для раздельно работающих трансформаторов:

Для остальных вариантов расчет аналогичен. Расчеты сводим в таблицы.

Таблица 6

№ ступени

Нагрузка

кВА

Кзагр.*0,5

Прод-ть одной ступени нагрузки

ч/год

Кзагр.

двух отдельно работающих тр-ов

Потери мощн. в тр-ах

кВт

Потери

эл.эн.

в тр-ах

кВт*ч/год

1

8174

1,02

730

1,02

167,62

1164900

2

8251,6

1,03

730

1,03

170,86

1191000

3

8407,9

1,05

365

1,05

176,54

1227000

4

8431,5

1,054

2920

1,054

177,4

1293000

5

8638,9

1,08

182,5

1,08

185,09

1291000

6

8670

1,084

365

1,084

186,26

1305000

7

8691,4

1,086

365

1,086

187,06

1311000

8

8766,5

1,096

182,5

1,096

189,91

1329000

9

8791,5

1,099

182,5

1,099

190,87

1337000

10

8818,9

1,102

1277,5

1,102

191,91

1370000

11

8998,9

1,125

1460

1,125

198,88

1430000

Итого:

8760

2022,4

24733000

Вариант 2:

· ТМН - 6300/35

Таблица 7

№ ступени

Нагрузка

кВА

Кзагр.*0,5

Прод-ть одной ступени нагрузки

ч/год

Кзагр.

двух отдельно работающих тр-ов

Потери мощн. в тр-ах

кВт

Потери

эл.эн.

в тр-ах

кВт*ч/год

1

8174

0,649

730

0,649

118,86

713000

2

8251,6

0,655

730

0,655

120,52

726100

3

8407,9

0,667

365

0,667

123,91

741300

4

8431,5

0,669

2920

0,669

124,42

827200

5

8638,9

0,686

182,5

0,686

129,03

776100

6

8670

0,688

365

0,688

129,73

787500

7

8691,4

0,690

365

0,690

130,21

791400

8

8766,5

0,696

182,5

0,696

131,91

799100

9

8791,5

0,698

182,5

0,698

132,48

803600

10

8818,9

0,70

1277,5

0,70

133,11

843600

11

8998,9

0,714

1460

0,714

137,28

882600

Итого:

8760

1411,46

8691500

Вариант 3:

· ТМН - 4000/110

Таблица 8

№ ступени

Нагрузка

кВА

Кзагр.*0,5

Прод-ть одной ступени нагрузки

ч/год

Кзагр.

двух отдельно работающих тр-ов

Потери мощн. в тр-ах

кВт

Потери

эл.эн.

в тр-ах

кВт*ч/год

1

8174

1,02

730

1,02

181,60

1261000

2

8251,6

1,03

730

1,03

184,58

1285000

3

8407,9

1,05

365

1,05

190,69

1325000

4

8431,5

1,054

2920

1,054

191,62

1396000

5

8638,9

1,08

182,5

1,08

199,92

1393000

6

8670

1,084

365

1,084

201,18

1408000

7

8691,4

1,086

365

1,086

202,05

1415000

8

8766,5

1,096

182,5

1,096

205,12

1435000

9

8791,5

1,099

182,5

1,099

206,15

1443000

10

8818,9

1,102

1277,5

1,102

207,28

1479000

11

8998,9

1,125

1460

1,125

214,8

1543000

Итого:

8760

2184,99

15383000

Вариант 4:

· ТМН - 6300/110

Таблица 9

№ ступени

Нагрузка

кВА

Кзагр.*0,5

Прод-ть одной ступени нагрузки

ч/год

Кзагр.

двух отдельно работающих тр-ов

Потери мощн. в тр-ах

кВт

Потери

эл.эн.

в тр-ах

кВт*ч/год

1

8174

0,649

730

0,649

125,79

760200

2

8251,6

0,655

730

0,655

127,56

774300

3

8407,9

0,667

365

0,667

131,18

790900

4

8431,5

0,669

2920

0,669

131,73

879800

5

8638,9

0,686

182,5

0,686

136,64

828200

6

8670

0,688

365

0,688

137,39

840200

7

8691,4

0,690

365

0,690

137,90

844300

8

8766,5

0,696

182,5

0,696

139,72

852700

9

8791,5

0,698

182,5

0,698

140,33

857500

10

8818,9

0,70

1277,5

0,70

141,00

899100

11

8998,9

0,714

1460

0,714

145,45

940400

Итого:

8760

1494,69

9267600

7. Технико-экономическое обоснование выбора напряжения питающей линии ГПП

Задачей технико-экономических расчетов является выбор оптимального варианта передачи, преобразования и распределения электроэнергии от источника питания до потребителей.

Критерием оптимального варианта служит минимум приведенных годовых затрат:

, где

- нормативный коэффициент эффективности капитальных вложений

- единовременные капитальные вложения

- суммарные годовые эксплуатационные расходы

7.1 Выбор и обоснование схемы внешнего электроснабжения

В качестве схемы внешнего электроснабжения принимаем схему: два блока с отделителями и неавтоматической перемычкой со стороны линий [2].

Рис. 7 Схема внешнего электроснабжения

Данная схема удовлетворяет основным требованиям, предъявляемым к схемам электрических соединений:

· Схема обеспечивает надежное питание присоединенных потребителей в нормальном, ремонтном и послеаварийном режимах.

· Схема обеспечивает надежность транзита мощности через подстанцию в нормальном, ремонтном и послеаварийном режимах.

· Схема является простой, наглядной и экономичной.

7.2 Выбор сечения проводников для двух классов напряжений

Выбор сечения проводов проводим по экономической плотности тока в нормальном и послеаварийном режимах.

Правильно выбранное сечение должно удовлетворять следующим требованиям:

· По перегрузке

· По допустимой потере напряжения ( - нормальном режиме, - в послеаварийном)

· По потере на корону (для 110 кВ и выше)

Экономическое сечение:

, где

- нормированное значение экономической плотности тока при

Вариант 1:

Принимаем ближайшее стандартное сечение . Выбираем сталеалюминевые провода марки АС-70, допустимый ток [2].

Для принятого сечения проводим все необходимые проверки:

1) По аварийному току:

2) По механической прочности:

Для сталеалюминевых проводов минимальное сечение по условию механической прочности составляет .

3) По допустимой потере напряжения:

Допустимая длина питающей линии:

, где

- длина линии, при полной нагрузке на которой, потеря напряжения равна 1% [3].

- допустимая потеря напряжения в нормальном режиме

4) По короне:

Проверка на корону осуществляется для линий напряжением 110 кВ и выше. Следовательно, для данного варианта данную проверку не проводим.

Выбранное сечение удовлетворяет всем условиям.

Вариант 2:

Принимаем ближайшее стандартное сечение . Выбираем сталеалюминевые провода марки АС-70 [2].

Для принятого сечения проводим все необходимые проверки:

1) По короне:

Условие: , где

Если , то:

- начальная напряженность возникновения коронного разряда

- радиус провода марки АС-70[4]

- коэффициент гладкости провода

- относительная плотность воздуха, определяемая атмосферным давлением и температурой воздуха

- напряженность электрического поля около поверхности нерасщепленного провода

- для железобетонной двухцепной опоры ПБ-110-4 (СК-4), подвеска проводов типа «бочка» [5]

Таким образом,

- условие выполняется.

Выбранное сечение удовлетворяет всем условиям.

2) По аварийному току:

3) По механической прочности:

Для сталеалюминевых проводов минимальное сечение по условию механической прочности составляет .

4) По допустимой потере напряжения:

Допустимая длина питающей линии:

Выбранное сечение удовлетворяет всем условиям.

7.3 Технико-экономические сравнения рассматриваемых вариантов ВЛЭП

Капитальные затраты

Вариант 1:

, где

- стоимость сооружения одного километра линии на стальных двухцепных опорах [2]

- длина ВЛЭП

ОРУ содержит в себе два блока с отделителем и неавтоматической перемычкой, стоимостью [2]:

Вариант 2:

, где

- стоимость сооружения одного километра линии на железобетонных двухцепных опорах [2]

Эксплуатационные затраты

Вариант 1:

Стоимость потерь энергии в линиях:

, где

- число цепей ВЛЭП,

- удельные потери (на одну цепь) при номинальной загрузке ЛЭП, т.е. при [3]

- стоимость электроэнергии. Принимаем

- время максимальных потерь,

Отчисления на амортизацию и обслуживание элементов:

, где

- издержки на амортизацию и обслуживание ЛЭП

- издержки на амортизацию и обслуживание силового оборудования ОРУ 35 кВ

Вариант 2:

Стоимость потерь энергии в линиях:

, где

Отчисления на амортизацию и обслуживание элементов:

Полные затраты

Вариант 1:

, где

- нормативный коэффициент капитальных вложений в ЛЭП

- нормативный коэффициент капитальных вложений в силовое оборудование

Вариант 2:

8. Технико-экономические расчеты по выбору варианта ГПП

8.1 Капитальные затраты на трансформаторы и стоимость потерь электроэнергии в них

Вариант 1:

·

где, - суммарные годовые эксплуатационные расходы

- единовременные кап. затраты в трансформаторы [2]

- стоимость потерь электроэнергии в трансформаторах

- потери электроэнергии в раздельно-работающих трансформаторах, кВт*ч/год (табл.6)

Вариант 2:

·

где, - единовременные кап. затраты в трансформаторы [2]

, где

Вариант 3:

·

, где

Вариант 4:

·

, где

8.2 Полные затраты по вариантам

Полные затраты по всем вариантам сведем в таблицу.

Таблица 10

...........

Страницы: [1] | 2 |


......
Для просмотра полного текста работы, скачайте ее - бесплатно.







 
 
Показывать только:


Портфель:
Выбранных работ  

Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Компенсирующие устройства и напряжение питающей линии ГПП вагоноремонтного завода | курсовая работа

СтудентБанк.ру © 2013 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег