Главная   Добавить в избранное Общие принципы технологии криогенного охлаждения мяса индейки | курсовая работа


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней


 





Общие принципы технологии криогенного охлаждения мяса индейки - курсовая работа


Категория: Курсовые работы
Рубрика: Кулинария и продукты питания
Размер файла: 66 Kb
Количество загрузок:
70
Количество просмотров:
1573
Описание работы: курсовая работа на тему Общие принципы технологии криогенного охлаждения мяса индейки
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



Калининградский Государственный

Технический Университет

Кафедра технологии продуктов питания

Курсовая работа Курсовая работа

допущена к защите защищена с оценкой____

р-ль: д.т.н., проф. р-ль: д.т.н., проф.

___________ Семенов Б.Н. __________Семенов Б. Н.

Общие принципы технологии криогенного охлаждения мяса индейки

курсовая работа по дисциплине «Общие принципы переработки сырья и введение в технологию производства продуктов питания»

Работу выполнила

студентка гр. 01-ТП-2

______Родионовская Ю.А.

Калининград

2004

Содержание

1. Введение………………………………………………………………3

2. Характеристика мяса птицы………………………………………..4-22

2.1. Общий химический состав птицы……………………………….4

2.2. Теплофизические свойства сырья…………………………….....5

2.3. Азотистые вещества и аминокислотный состав белков……….7

2.4. Фракционный и жирнокислотный состав липидов…………… 10

2.5. Состав углеводов…………………………………………………12

2.6. Витамины, микро- и макроэлементы……………………………13

2.7. Свойства воды, входящей в состав мяса………………………..14

2.8. Характеристика ферментов мяса……………………………......16

2.9. Структурно-механические свойства мяса птицы………………19

3. Технологическая схема………………………………………………24

4. Изменения, происходящие в процессе охлаждения…………….29-42

4.1 Физико-химические изменения……………………………………..29

4.2 Микробиологические изменения……………………………………39

5. Анализ и моделирование……………………………………………..43

6. Заключение……………………………………………………………46

7. Список используемой литературы…………………………………..47

Введение

Дефицит в общемировом производстве продуктов питания обусловлен прежде всего ростом населения ряда стран, многие из которых не в состоянии обеспечить себя необходимым рационом питания. Между тем, по данным Международного института холода, ежегодно теряется 20-30% всех производимых в мире продуктов питания, что составляет почти миллиард тонн. Из указанного количества не менее 50% - это скоропортящиеся продук-

ты, сохранение которых возможно только с помощью холода. Реально же холод применяют для сохранения примерно половины этого количества(14).

На современном этапе развития пищевой индустрии роль холода неук-

лонно возрастает, и в первую очередь в области консервирования сырья и продуктов питания, ассортимент которых непрерывно увеличивается.

Все большую популярность приобретает использование криогенных температур (низких температур). Наиболее развитой областью криогеники является область азотных температур. Ее развитие во многом связано с тех-

никой разделения воздуха, с помощью которой при криотемпературах мето-

дом низкотемпературной ректификации из воздуха извлекают азот и кисло-

род, а также такие газы, как аргон, неон, криптон и ксенон. Получение необ-

ходимой температуры в интервале от 120 до 65 К возможно как с помощью жидкого воздуха, так и основных его компонентов в жидком виде: азота, кис-

лорода и аргона. Однако при практическом использовании этих криопродук-

тов в жидком виде предпочтительным является жидкий азот.

В нашей стране и за рубежом в настоящее время эксплуатируется дово-

льно большое число различных типов воздухоразделительных установок, на которых производится получение из воздуха газообразного и жидкого азота.

Эти установки широко различаются по производительности, используемому криогенному циклу и чистоте получаемого азота. В большинстве - это мно-

горежимные установки, которые, наряду с получаемым из воздуха азотом, обеспечивают получение других продуктов разделения воздуха и прежде все-

го кислорода.

Увеличение объемов производства жидкого азота и газообразного в значительной степени обеспечивается тем, что в качестве исходного сырья используется атмосферный воздух и в соответствии с этим не требуется мате-

риальных затрат на источники сырья, запасы которого неисчерпаемы, а так-

же особенностью его теплофизических свойств, определяющих перспектив-

ность использования его в различных технологических процессах в качестве

хладагента.

В настоящее время техника хранения, транспортирования и обращения с жидким азотом хорошо освоена(19).

Общий химический состав мяса птицы

Мясо, главным образом, представлено мышечной тканью. Мышечная ткань характеризуется сложным химическим составом. В нее входит значи-

тельное количество лабильных веществ, содержание и свойства которых могут меняться в зависимости от многих факторов как при жизни птицы (предубойное содержание), так и сразу после убоя. Поэтому химический состав ткани изучают при строго определенных условиях, к которым относи-

тся быстрое извлечение ткани после убоя птицы, охлаждение, быстрое изме-

льчение при охлаждении, обработка при низких температурах и т. д.

При исследовании химического состава мышечную ткань освобождают по возможности от других тканей (соединительной, жировой и др.) и измель-

чают (гомогенизируют). После этого выделяют и разделяют химические ком-

поненты, входящие в состав ткани. Такое разделение чаще всего основывает-

ся на избирательной растворимости отдельных химических веществ мышеч-

ной ткани в различных растворителях: в воде, вводно-солевых растворах при

различном значении рН, органических растворителях и т. д. Для извлечения липидов измельченную ткань перед экстракцией предварительно высушивают(13).

Содержание основных групп химических веществ в мышечной ткани индейки первой категории характеризуется следующими данными (в г.).

Вода………………………………….57,3

Белки…………………………………19,5

Жиры…………………………………22,0

Углеводы…………………………….. -

Зола……………………………………0,9

Минеральные вещества:

Na…………………………………….0,09

К……………………………………...0,21

Са…………………………………...0,012

Мg………………………………..0,019

Р………………………………….0,2

Fe…………………………………0,0014

Витамины:

А……………………………… 0,00001

В1………………………………0,00005

В2………………………………0,00022

РР………………………………0,0078

Энергетич. ценность……………276

Теплофизические свойства птицы

При изучении теплофизических характеристик необходимо учитывать строение материала, взаимодействие его с внешней средой, влияние адсорби-

рующих добавок, резко изменяющих структурно-механические свойства обрабатываемых тел, также молекулярные и химические взаимодействия влаги с материалом и условия перемещения ее в материале(2).

С повышением влажности мяса птицы удельная теплоемкость увеличивается.

Таблица 1

Плотность мяса птицы

Мясо

r--(в кг/м^3) в среде

гелия

азота

воздуха

Индейка приготовленная (белое мясо)

1268

1270

1265

Плотность тела - называется предел отношения массы элемента тела к его объему.

Коэффициент теплопроводности численно равен количеству тепла, переносимому через единицу поверхности в единицу времени при градиенте температур, равном единице. Теплопроводность зависит от химического состава продукта и при увеличении содержания воды увеличивается.

Из-за низкой теплопроводности кожи коэффициент теплопроводности одних мускул заметно больше, чем мускул с кожей (табл. 2).

Таблица 2

Коэффициент теплопроводности мяса кур

Объект исследования

Толщина, мм

W, %

r, --кг/м^3

l, Вт/(м*К)

цыпленок

курица

цыпленок

курица

Грудные мышцы

5,18

5,41

69,7

1070

0,38

0,44

Кожа

1,70

1,24

38

1030

0,03

0,02

Мускулы с кожей

-

-

-

1030-1070

0,37

0,39

Эти опыты проводились с 8-недельными цыплятами и 18-месячными курами. Температура объектов исследования менялась от 277,4 до 299,6 К при направлении теплового потока перпендикулярно волокнам мышц.

Установлено влияние температуры (Т = 273-293 К) на коэффициент теплопроводности ( в Вт/(м*К)) мяса птицы.

Для темного мяса

l = 0,245 + 0,000865Т;

для светлого мяса

l = 0,311 + 0,000605Т.

Из выше написанного следует, что теплопроводность светлого мяса больше, чем темного. Это обусловлено тем, что в мясе светлой мускулатуры содер-

жится больше влаги, чем в темной (16).

Коэффициент теплопроводности мяса птицы, по данным разных авто-

ров, различается незначительно (табл. 3).

Таблица 3

Коэффициент теплопроводности мяса птицы

Мясо

W, %

Т, К

Направление теплового потока относительно волокон мяса

l, Вт/(м*К)

Индейки

мускулы

груди

ноги

74

74

274

277

275

275

Перпендикулярно

Параллельно

Перпендикулярно

0,52

0,50

0,52

0,50

Таблица 4

Теплофизические характеристики мяса птицы

Мясо

Т, К

W, %

r, кг/м^3

с, Дж/(кг*К)

l, Вт/(м*К)

а*10^8, м^2/с

Куриное

-

-

1030

3307

0,41

12,0

Индейки

273-293

74

1070

3517

0,519

13,8

Удельная теплоемкость С - количество теплоты, поглощенной или выделяемой 1 кг продукта при повышении или понижении температуры на 1 С. Для однородного тела с = С/m. Измеряется в кДж/(кг*К)

Азотистые вещества и

аминокислотный состав белков

Из азотистых небелковых веществ мышечной ткани выделяют: Карно-

зин, ансерин, карнитин, креатин, креатинфосфат, аденозинтрифосфорная кислота, которые при жизни птицы выполняют специфические функции в процессе обмена веществ и энергии. Другая часть азотистых веществ - пури-

новые основания, свободные аминокислоты и др. - представляет собой про-

межуточные продукты обмена белков. Наконец часть азотистых веществ, например мочевина, мочевая кислота и аммонийные соли, является конечны-

ми продуктами обмена белков. В общем в свежих мышцах содержится 0,3%

небелкового азота в расчете на сырую ткань, или 1,2% в расчете на сухой остаток(13).

Содержание отдельных азотистых веществ в свежих мышцах характе-

ризуется следующими данными ( в % на сырую ткань).

Карнозин……………….0,2-0,3 Аденозинтрифосфор-

Ансерин………………..0,09-0,15 ная ислота………………….0,25-0,4

Карнитин……………….0,02-0,05 Инозиновая кислота…………0,01

Холин…………………..0,08 Пуриновые основания……….0,07-0,23

Креатин + креа- Свободные аминокислоты…....0,1-0,7

тинфосфат…………… .0,2-0,55 Мочевина…………………….0,002-0,2

После убоя птицы азотистые вещества и продукты их превращения участвует в создании специфического вкуса и аромата мяса.

Карнозин ( b-аланилгистидин). Специфический дипептид

Карнозин стимулирующе действует на секрецию пищеварительных же-

лез. При жизни птицы карнозин участвует в процессах окислительного фос-

форилирования, что способствует образованию в мышце макроэргических фосфатных соединений (АТФ и КрФ).

Ансерин (метилкарнозин). Гомолог карнозина

Ансерин впервые выделен из мышечной ткани гусей. Ансерину припи-

сывают те же функции, что и карнозину.

Карнитин. Производное g-амино-b-оксимасляной кислоты

Роль карнитина в превращениях мышечной ткани еще не достаточна ясна. Считают, что он является одним из источников метильных групп.

Холин. Аминоэтиловый спирт с тремя метильными группами у атома азота

Холин необходим для образования фосфолипидов и ацетилхолина - соединения, играющего важную роль в процессе передачи нервного возбуж-

дения при сокращении мышц.

Свободный холин вызывает перистальтику кишечника. Как веществу, поступающему с продуктами питания, ему приписывается значение витами-

на.

Глютатион (глютаминилцистеилглицин). Специфический трипептид

Глютатион является сильным восстановителем и, подобно цистеину, легко подвергается окислению. В живых тканях глютатион в основном находится в восстановленной форме и по мере необходимости переходит в окисленную форму

Глютатиону, очевидно, принадлежит особая роль в поддержании окис-

лительно-восстановительного потенциала мышечной клетки и активации ферментов, содержащих в активном центре SH-группы.

Креатин. По строению является метилгуанидинуксусной кислотой

Аминокислотный состав белков индейки первой категории представлен в таблице 5.

Таблица 5

Аминокислоты, мг в 100 г продукта (20)

Показатель

Количество

Показатель

Количество

Белок, %

Незаменимые аминокислоты

В том числе:

Валин

Изолейцин

Лейцин

Лизин

Метионин

Треонин

Тирозин

Триптофан

Фенилаланин

Цистеин

Заменимые аминокислоты

19,5

7620

930

963

1587

1636

497

875

616

329

803

121

11834

В том числе:

Аланин

Аргинин

Аспарагиновая кислота

Гистидин

Глицин

Глут. к-та

Оксипролин

Пролин

Серин

Общее количество

Лимитирующая

аминокислота,

Скор, %

1218

1168

2007

540

1137

3280

181

831

735

19454

нет

Жирнокислотный состав липидов

При оценке пищевой ценности продукта большое значение придается содержанию липидов и особенно незаменимых жирных кислот, которые не могут синтезироваться в организме человека (линолевая, линоленовая, арахи-

доновая).

Биологическая ценность жиров характеризуется коэффициентом эффективной метаболизации (КЭМ), представляющим собой отношение концентрации содержания арахидоновой кислоты (С20:4) к сумме всех других полиненасыщенных кислот с 20 и 22 углеродными атомами, следующим об-

разом:

КЭМ = С20:4/(С20:2 + С20:3 + С20:5 + С22:5 + С22:6)

Липиды мяса птицы представлены в таблице 6.

Таблица 6

Липиды, г в 100 г продукта(20).

Сумма липидов

триглицериды

фосфолипиды

холистерин

Жирные кислоты (сумма)

Насыщенные

В том числе:

С12:0 лауриновая

С14:0 миристиновая

С15:0 пентадекановая

С16:0 пальмитиновая

С17:0 маргариновая

С18:0 стеариновая

22,00

16,06

4,40

0,21

18,35

5,82

0,02

0,23

0,03

4,1

0,07

1,35

С20:0 арахиновая

Мононенасыщенные

В том числе:

С14:1 миристолеиновая

С16:1 пальмитолеиновая

С17:1 гептадеценовая

С18:1 олеиновая

С20:0 гадолеиновая

Полиненасыщенные

В том числе:

С18:2 линолевая

С18:3 линоленовая

С20:4 арахидоновая

0,02

8,46

0

1,78

0,05

6,42

0,21

4,07

3,88

0,15

0,04

Так как многие полиненасыщенные кислоты, необходимые для расчета коэффициента отсутствуют, то подсчитаем его для полосатого тунца:

С20:2 = 6,520 С20:5 = 5,160

С20:3 = 1,360 С22:5 = 5,940

С20:4 = 0,420 С22:6 = 15,54

КЭМ = 0,420/34,560 = 0,012 (16)

Липиды, входящие в состав мышечных волокон, выполняют функции двоякого рода. Часть их, главным образом фосфолипиды, является пласти-

ческим материалом и входит в структурные элементы мышечного волокна - миофибриллы, клеточные мембраны, прослойки гранул.

В состав миофибрилл входят различные глицерофосфолипиды, многие из них способствуют проявлению активности ряда ферментов. Особенно большим содержанием фосфолипидов отличается саркоплазматический рети-

кулум и сарколеммные мембраны. Однако общее содержание фосфолипидов в сарколеммной мембране значительно ниже, чем в митохондриях, причем качественный состав их в ней не отличается от состава субклеточных структур.

Другая часть липидов выполняет роль резервного энергетического материала, такие липиды содержатся в саркоплазме в виде мелких капелек на полюсах митохондрий. В большом количестве липиды содержатся в межклеточных пространствах, между пучками мышц в соединительных прослойках (13).

Состав углеводов

Одним из основных углеводов мышечной ткани является гликоген - важнейший энергетический материал. он расходуется при мышечной работе и накапливается при отдыхе. Содержание его зависит от тренированности и упитанности птицы, а также физиологического состояния.

Мышечный гликоген представляет собой сильно разветвленный поли-

сахарид, построенный из сотен молекул a-глюкозы. молекулярная масса его равна 1*10^6. Большая степень разветвленности мышечного гликогена необ-

ходима, поскольку действию ферментов подвергаются концы молекулы; чем больше свободных концов, тем быстрее может быть использована молекула гликогена или быстрее может быть заново синтезирована во время таких периодов клеточного метаболизма, когда происходит его регенерация. В пе-

риод распада молекул гликогена наряду с последовательным разрушением его боковых цепей под действием эндоамилаз происходит и образование его частей - «затравок», которые также могут затем расти за счет присоединения глюкозы. Мышечная ткань отличается высокой концентрацией ферментов и факторов системы, синтезирующей гликоген.

В мышечных волокнах обнаруживается определенная связь гликогена с миофибриллами. Наблюдается локализация гликогена у анизотропных дис-

ков и он не обнаруживается в изотропных. Кроме того, гликоген более или менее равномерно распределен в саркоплазме ( с преобладанием в около-

ядерной саркоплазме). Возможно, что связь гликогена с миозином анизотропных дисков миофибрилл и миогеном саркоплазмы обеспечивает необходимый темп расщепления полисахарида при его гликолитическом рас-

паде. В этих превращениях более лабильной является фракция легкораство-

римого гликогена. Наряду с этим труднорастворимый гликоген метаболичес-

ки не инертен и является резервом, находящимся в состоянии непрерывного обновления.

В процессе интенсивной мышечной работы гликоген подвергается ана-

эробному гликолитическому распаду с образованием молочной кислоты. В процессе превращения гликогена образуются фосфорные эфиры гексоз и триоз, пировиногралная кислота и другие продукты распада, однако количес-

тво их относительно невелико.

Гликоген распадается в мышцах не только фосфорилитическим, но и гидролитическим (амилолитическим) путем под дествием--a-амилазы, нейтра-

льной g-амилазы, олиго-1,4 - 1,4-глюкантрансферазы и амило-1,6-глюкозида-

зы. В качестве конечных продуктов такого распада гликогена образуются глюкоза, линейные и разветвленные олигоглюкозиды. Дальнейшее расщеп-

ление олигоглюкозидов осуществляется специфичными a-олигоглюкозида-

зами (13).

Витамины

Витамины представлены в таблице 7(20).

Таблица 7

Витамины в 100 г. продукта (тушки индейки первой категории)

Витамин А, мг……………………0,01

b-каротин, мг………………………сл.

Витамин Е, мг……………………0,34

Витамин В6, мг…………………..0,33

Витамин В12, мкг…………………-

Биотин, мкг………………………..-

Витамин С, мг……………………..-

Ниацин, мг………………………...7,8

Пантотеновая

кислота, мг……………………….0,65

Рибофлавин, мг…………………..0,22

Тиамин, мг………………………..0,05

Фолацин, мкг……………………..9,6

Холин, мг…………………………139

Свойства воды, входящей в состав сырья

Содержание воды в мышцах колеблется в зависимости от возраста птицы: чем она моложе, тем больше влаги в мышцах. Неодинаково содержание воды в различных группах мышц и уменьшается по мере увеличения содержания жира. Вода, входящая в состав мышечной ткани, не-

однородна по физико-химическим свойствам и роль ее неодинакова.

Различают две формы воды - свободную и связанную. Свободная жидкая вода имеет квазикристаллическую, тетраэдрическую координирован-

ную структуру. Она ограничена степенями свободы за счет образования водородных связей между отдельными молекулами. Этим объясняется высо-

кая диэлектрическая постоянная воды. С помощью тяжелой воды и примене-

ния метода ядерно-парамагнитного резонанса установлено, что свободная во-

да мышечной ткани также имеет явно выраженную подобную координиро-

ванную, тетраэдрическую структуру. Другая часть воды находится в связан-

ном состоянии - ионная и гидратная вода, активно удерживаемая главным образом белковыми веществами и некоторыми другими химическими компонентами клеток (например, углеводами, липидами). Такое состояние объясняется наличием химической или физико-химической связи между водой и веществом. Около 70% воды ткани ассоциируется с белками мио-

фибрилл.

Гидратация белковых молекул обусловлена полярными свойствами мо-

лекул воды (дипольным строением) и наличием функциональных групп (аминных, карбоксильных, гидроксильных, пептидных и др.) в молекуле бел-

ков. При этом диполи воды образуют гидратные слои вокруг активных групп

и белковой молекулы в целом. При гидратации часть воды, связываясь с гидрофильными группами белка, располагается вокруг белковых молекул в виде мономолекулярных слоев. Первые слои удерживаются довольно прочно, а последующие - значительно слабее, располагаясь в виде рыхлого диффузного облака. Окружая функциональные группы соседних белковых цепей, связанная вода существенно влияет на стабилизацию их простран-

ственной конфигурации, и, следовательно, определяет их функциональную деятельность.

На некоторых участках молекул белков могут образоваться водные мостики.

Связанная вода удерживается белком довольно прочно. Она характери-

зуется рядом специфических свойств: более низкая точка замерзания, мень-

ший объем, отсутствие способности растворять вещества, инертные в химическом отношении ( находящиеся в небольших концентрациях) - сахара, глицерин, некоторые соли. Связанная вода составляет 6-15% от масс-

сы ткани.

За слоем гидратной воды расположены слои относительно слабо удер-

живаемых молекул воды, представляющей собой раствор различных веществ, - это свободная вода. В ткани ее содержится от 50 до 70%. Удерживается она большей частью за счет осмотического давления и адсорб-

ции структурами клеток - сеткой белковых мембран и белковых волокон, а также в результате заполнения макро- и микрокапиллярных внутриклеточ-

ных и межклеточных пространств ткани. Поэтому такую воду рассматривают как иммобилизованную воду, которая в значительном количестве сравните-

льно легко может быть удалена из ткани (13).

Характеристика ферментов сырья

Мышечная ткань осуществляет свои функции благодаря активному участию ферментных систем, специфически локализованных в структурах ткани. Ферментные системы обеспечивают получение большого количества энергии, необходимой для осуществления мышечной деятельности. Мышечные клетки характеризуются большой концентрацией ферментов гли-

колиза, а также ферментов числа трикарбоновых кислот и дыхательной цепи.

Считается, что осуществление гликолиза и связанное с ним выделение энергии не нуждается в высокой дифференциации структурно-ферментного аппарата, а поэтому протекает в матриксе саркоплазмы. Вместе с тем разли-

чные воздействия на мышечную ткань повышают интенсивность гликолити-

ческих процессов, что может свидетельствовать о выходе ферментов из ограничивающих структур и их активации.

В матриксе саркоплазмы содержатся многие ферменты синтеза белков, липидов и полисахаридов.

Аэробное окисление продуктов обмена происходит в митохондриях (саркосомах). Большинство ферментов, участвующих в процессах окисления, обнаруживается именно в этих органеллах. Во всех мышечных клетках мито-

хондрии занимают значительную часть саркоплазмы, и в каждой из них го-

раздо больше крист ( складчатые внутренние мембраны митохондрий), чем в менее многочисленных митохондриях других клеток. процессы, протекаю-

щие в складчатых внутренних мембранах митохондрий при участии локализованных в них ферментных систем, играют основную роль в снабже-

нии мышечной клетки энергией.

Разные мышцы в зависимости от функциональных особенностей харак-

теризуются различным соотношением концентрации ферментных систем, ка-

тализирующих анаэробные и аэробные превращения. Так, в красных мышеч-

ных волокнах содержится больше митохондрий, чем в белых; активность дыхательных ферментов в них в 6 раз больше, чем в белых. В белых мышцах интенсивность анаэробного гликогенолиза примерно в 2 раза выше, чем в красных.

Интенсивность окисления жиров в мышцах относительно невелика, но после углеводов они являются важнейшим источником энергии. При недос-

татке углеводов в процессы обмена вовлекается большее количество жиров.

К циклу трикарбоновых кислот непосредственно примыкают реакции окис-

ления жирных кислот. В митохондриях обнаружены ферменты, окисляющие жирные кислоты.

Такие процессы обмена аминокислот, как дезаминирование и переами-

нирование, также примыкают к циклу трикарбоновых кислот. Многие ферменты дезаминирования аминокислот обнаружены в митохондриях. Син-

тез многих аминокислот, как и «непрямое» их дезаминирование, осуществля-

ется реакциями переаминирования. Переаминирование аминокислот связано

с активностью аминофераз, содержащихся в митохондриях.

Вместе с тем ферменты переаминирования обнаружены также в жидкой части саркоплазмы.

Таким образом, в митохондриях мышц содержатся сложные фермен-

тные системы, составляющие единый комплекс, к которому примыкают фер-

менты других компонентов клетки. Изменение физико-химического состоя-

ния этих органелл сказывается на активности их ферментов. Деструкция ми-

тохондрий нарушает координированное осуществление сложного комплекса взаимосвязанных процессов обмена, происходящих в них.

Саркоплазматический ретикулум содержит, кроме активируемой иона-

ми магния АТФ-азы, также обладающую очень высокой активностью АМФ-аминогидролазу.

В ядрах содержатся гликолитические, окислительные, гидролитические ферменты, а также ферменты белкового синтеза. Кроме того, в ядрах имеют-

ся ферменты синтеза нуклеиновых кислот (ДНК-полимераза и РНК-полиме-

раза).

С миофибриллами связана основная АТФ-азная активность, которой, как известно, обладает миозин и она зависит от присутствия катионов Na , K ,

Li , Ca , Mg , NH . Очищенный миозин активируется ионами кальция и ингибируется ионами магния. Наряду с этим имеется также растворимая АТФ-аза, отличная от миозина, содержащаяся в различных структурах клет-

ки: в ядрах, митохондриях и мембранных элементах саркоплазмы. Это АТФ-аза активируется ионами магния.

АТФ-азной активностью обладает определенная часть молекулы мио-

зина - его компонент - Н-миозин. Многократно переосажденный миозин наряду с АТФ-азной активностью АМФ-аминогидролазы, ацетилхолинэсте-

разы. Активность этих ферментов сосредоточена в L-миозине. Кроме того, миофибриллы характеризуются глютаминазной активностью. В проявлении активности ферментов в миофибриллах играют роль фосфолипиды. При де-

липировании миофибрилл в них резко снижается активность АТФ-азы, АМФ-аминогидролазы и ацетилхолинэстеразы.

В сарколеммной мембране обнаружено наличие АМФ-аминогидролазы и весьма активной ацетилхолинэстеразы.

К рибосомным относят ферменты, принимающие участие на тех стади-

ях синтеза белка, которые происходят на рибосомах. Эти ферменты участву-

ют в прикреплении, передвижении и отделении от рибосомной поверхности И-РНК и Т-РНК; перенос недостроенных полипептидов от одной молекулы Т-РНК и сопутствующее образованию пептидной связи. К рибосомным ферментам относят также рибонуклеазу 1, ГТФ-азу и др.

Лизосомы содержат клеточные гидролазы: кислую рибонуклеазу, дезоксирибонуклеазу, кислую фосфатазу, катепсины, эстеразы, гликозидазы. В живой клетке эти ферменты могут действовать в основном на фагоцити-

рованный материал, попавший внутрь лизосомы. Мышечной клетке это необходимо для обновления ее важнейших структур и компонентов. Если целостность лизосомы нарушена, то гидролазы высвобождаются и перевари-

вают компоненты клетки.

Наличие в лизосомах липопротеидной мембраны надежно удерживает гидролитические ферменты и предотвращает переваривание субстратов мы-

шеечного волокна тотчас после убоя. Однако в дальнейшем, под воздействи-

ем различных факторов, происходит высвобождение гидролаз

Структурно-механические свойства сырья

Структурно-механические характеристики представляют собой фундаментальные физические свойства продуктов. Они проявляются при механическом воздействии на обрабатываемый продукт и характеризуют его сопротивляемость приложенным извне усилиям, обусловленную строением и структурой продукта. Эти характеристики используются для расчета процес-

сов в рабочих органах машин с целью определения их механических пара-

метров (геометрических, кинематических и динамических); они отражают существенные аспекты качества продуктов. Кроме того, структурно-механи-

ческие характеристики учитываются при расчете различных физических процессов (22).

Сдвиговые характеристики.

В я з к о с т ь к р о в и. Кровь состоит из плазмы и форменных элемен-

тов. Плазма составляет 60% объема крови и представляет собою сложный раствор, содержащий белки, глюкозу, холестерин и его эфиры, фосфатиды, жиры и свободные жирные кислоты, небелковые азотистые и минеральные вещества. Форменные элементы крови (40%) представлены красными кровя-

ными шариками (эритроциты), белыми (лейкоциты) и кровяными пластинка-

ми (тромбоциты). Общее представление о составе крови дано на рис. (1).

Сухие вещества плазмы крови (7).

Б

М

Л

С

Аз

Ф

Г

А

Рис. (1). Б - Белки, 7,5%; Ф - Фибриноген, 0,2%; Г - Глобулины, 2,8-3,0%; А - Альбумины, 4,3%; М - Минеральное вещество, 1%; Л - Липиды, 1%; С - Сахар, Аз - Азотистые вещества.

При увеличении концентрации сухих веществ вязкость крови возрастает и уменьшается при увеличении температуры, что наглядно видно из табл. 8-10. В таблицах приведены данные исследований пищевой стабилизированной крови и плазмы, полученной из этой же крови промышленным сепарирова-

нием. Концентрирование осуществляется ультрафильтрацией на лаборатор-

ной установке. Вязкость измеряли с помощью вискозиметра Гепплера и рео-

вискозиветра Ротовиско.

Таблица 8

Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и температуры

Концентрация сухих веществ, кг на 1 кг крови

Температура, С

10

20

30

40

0,261

92

59

46

36

0,213

31

19

14

10

0,182

15

10

7

5

0,152

11

7

6

4

Данные таблицы 8 получены при градиенте скорости 380 с ^(-1), а

табл. 9 - при температуре 20 С. Следует отметить, что при концентрации 0,261 кровь представляет собой типичную степенную жидкость.

Таблица 9

Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и градиента скорости

Концентрация сухих веществ, кг на 1 кг крови

Градиент скорости, с

40

100

200

380

570

0,261

109

85

71

59

53

0,213

41

27

21

19

18

0,182

10

10

10

10

10

0,152

7

7

7

7

7

Таблица 10

Зависимость вязкости плазмы крови h*10^3 ( в Па*с) от концентрации и температуры

Концентрация сухих веществ, кг на 1 кг крови

Температура, С

10

20

30

40

0,1920

18,3

12,0

8,3

6,7

0,1635

11,5

7,7

5,5

4,5

0,1190

5,6

3,9

2,9

2,4

0,0835

3,1

2,3

1,8

1,5

При меньшей концентрации изменения эффективной вязкости от гра-

диента скости не описываются степенным законом, а плазма крови представ-

ляет собой ньютоновскую жидкость (см. табл. 10). При повышении концен-

трации сухих веществ вязкость крови возрастает менее интенсивно по сравнению с вязкостью бульона.

Компрессионные характеристики.

К о м п р е с с и н н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й

м я с а п р и о б ъ е м н о м с ж а т и и. Характеристики изучали с помощью цилиндров с поршнями при одностороннем нагружении. Объем цилиндра 0,0009 м^3, пределы изменения гидростатического давления - от 1*10^5 до 13*10^5 па. При этом были определены следующие реологические характе-

ристики: мгновенный модуль упругости давления 11,6*10^5 r^0,4; макси-

мальная деформация при длительности действия давления 180 с - 1,34*

*10^(-5) r^0,78; кинетика изменения относительных деформаций после разгрузки - 7,5*10^(-7) --r^0,61 [1 - exp(-8,9t)] + 134--r^0,78 (где t - длитель-

ность восстановления объема, с; пределы изменения t-----от 0 до 10с).

Прочностные характеристики.

П р о ч н о с т н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й

м я с а . При растяжении предел прочности различных мышц мяса определил Николаев. Длина образцов составляла от 0,01 до 0,02 м при поперечном сечении 0,005*0,002 м или 0,0075*0,002 м; скорость растяжения составляла 3*10^(-5) или 6*10^(-5) м/с. По-видимому если считать мясо нелинейным реологическим телом, то прочностные характеристики будут зависеть от геометрических размеров образца и кинематики нагружения.

Авторы установили корреляционную связь между прочностными ха-

рактеристиками и органолептической оценкой нежности. Их данные показы-

вают, что для сырого мяса напряжение разрыва зависит от вида мышцы (длиннейшая мышца спины, полусухожильная, трапецевидная мышцы); для вареного мяса такой дифференциации не наблюдается. С улучшением неж-

ности (более высокая органолептическая оценка в баллах) напряжение разрыва и модуля упругости уменьшаютс ...........



Страницы: [1] | 2 | 3 |


......
Для просмотра полного текста работы, скачайте ее - бесплатно.






 
Показывать только:


Портфель:
Выбранных работ  


Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Общие принципы технологии криогенного охлаждения мяса индейки | курсовая работа

СтудентБанк.ру © 2015 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег