1. Введение.
Значительную роль в использовании природных энергетических источников играют транспортные средства, потребляющие около трети всей добываемой в мире нефти, причем из всех видов транспорта наиболее энергоемким является автомобильный. Использование в автомобилях углеводородных топлив нефтяного происхождения сопровождается выбросом в атмосферу огромного количества вредных веществ. В результате на автомобильный транспорт приходится от 39 до 63% загрязнения окружающей среды, масштабы которой глобальны - воздух, суша и вода.
Традиционный подход к решению энерго-экологических проблем автомобилизации заключается в улучшении конструкции существующих двигателей внутреннего сгорания и создании более совершенных энерго- силовых установок нового типа при использовании более или менее обычных углеводородных топлив. В первом случае основное внимание уделяется повышению экономичности и снижению токсичности автомобилей путем сложной коррекции рабочего процесса в двигателе с целью обеспечения максимальной полноты сгорания топлива на всех рабочих режимах.
Новые транспортные двигатели, разработанные к настоящему времени, включают электрические силовые установки и тепловые двигатели внутреннего и внешнего сгорания с нетрадиционными рабочими процессами. К последним относят поршневые двигатели с послойным распределением заряда, газотурбинные, паровые и роторные двигатели, а также двигатели Стирлинга. Некоторые из этих двигателей, в частности двигатели Стирлинга, в принципе могут обеспечить возможность создания малотоксичного автомобиля на обычных топливах, удовлетворяющего будущим жестким нормам.
Большой интерес представляют электрические силовые установки использующие электрохимические источники энергии - аккумуляторные батареи и топливные элементы.
За последние несколько лет построено большое количество опытных образцов электромобилей. В электромобилях более перспективно применение топливных элементов, конвертирующих электрическую энергию непосредственно из топлива без промежуточной стадии. Благодаря успехам в этой области в последние годы удельная мощность водородо - кислородных топливных элементов увеличилось до 300 Вт/ч, а срок их службы повысился до нескольких лет при периодическом использовании. Основная проблема применения топливных элементов этого типа - трудность хранения водорода на автомобиле. Объемно-массовые показатели наиболее приемлемого варианта аккумулирования водорода в виде гидридов пока еще неудовлетворительны и находятся на уровне разрабатываемых электрохимических батарей. Поэтому практический интерес представляет применение топливных элементов с кислым электролитом, использующих в качестве рабочего тела смеси газов: водорода, метана, окиси углерода и др. эти элементы могут работать на жидких углеводородных топливах, в частности на метаноле, благодаря чему энергосиловые установки на их основе по удельной мощности приближаются к современным автомобильным двигателям.
Альтернативные приводы и источники энергии, не наносящие ущерба окружающей среде, называют надеждой завтрашнего дня. Топливные элементы считаются самым оптимальным решением энергетических проблем: из водорода и кислорода вырабатывается электрический ток, который используется для привода двигателя. В результате электрохимического процесса, помимо электрической энергии, образуются только тепло и водяной пар [ ].
Для промышленного получения водорода было предложено большое количество различных способов. Однако перечислять все способы и патенты по производству водорода нет нужды; это представляет главным образом исторический интерес, поскольку большинство из предложенных способов вообще не было осуществлено в промышленном масштабе, а в практических условиях оправдали себя лишь некоторые из них.
Основные методы получения водорода в промышленности можно сгруппировать в следующие: а) химические методы; б) электрохимические методы; в) физические методы.
К химическим методам относятся те процессы, в которых исходным веществом для получения водорода является химическое соединение (или ряд химических соединений) водорода с другими элементами, и откуда водород получается при помощи тех или иных химических реакций.
Под электрохимическими следует понимать те методы, где выделение водорода из его химических соединений осуществляется разложением последних под действием электрического тока.
К физическим методам следует причислять те процессы, в которых исходное сырьё (газовая смесь) уже содержит свободный водород и требуется тем или иным физическим путём (например, фракционной конденсацией) освободить его от остальных компонентов.
Химическими методами водород в промышленности получается следующими путями.
1) Из водяного пара восстановлением его железом (железо - паровой способ) или углеродом (газификация кокса, каменных и бурых углей и других видов твёрдого топлива на водяной газ).
2) Из газообразных углеводородов термическим разложением или конверсией с окислителями (Н2О, О2, СО2).
3) Из жидких углеводородов термическим разложением или неполным окислением (газификацией) с применением в качестве окислителей Н2О и О2.
Необходимо отметить, что при получении водорода из углеводородов с применением в качестве окислителя водяного пара последний является дополнительным источником водорода.
Следует также указать, что при химических методах (за исключением способов железо - парового и термического разложения) процесс получения водорода ведётся обычно в две ступени. При этом на первой ступени получают, как правило, смесь Н2 + СО (водяной газ). В случаях необходимости иметь чистый водород (без СО) водяной газ направляют на следующую ступень - конверсию СО.
При переработке газообразных углеводородов в азотоводородную смесь, в которой остаточное содержание углеводородов (метана) должно быть минимальным, процесс иногда ведётся в три ступени. На первой ступени имеет место конверсия исходного углеводородного газа с водяным паром; на второй ступени - конверсия остаточного СН4 с кислородом воздуха; на третьей ступени - конверсия окиси углерода.
Конкретным сырьём для получения водорода из газообразных углеводородов при термическом разложении служат любые углеводородные газы, не содержащие кислородных соединений, или содержащие их в незначительном количестве, как природные так и попутные газы, газы нефтепереработки и газы гидрирования.
При конверсии газообразных углеводородов с водяным паром углекислотой или кислородом сырьём являются: а) природные и попутные газы; б) газы нефтепереработки, в) газы гидрирования; г) жидкие газы (пропан, бутан); д) коксовый газ; е) метановая фракция после выделения водорода из коксового газа методом глубокого охлаждения.
При неполном окислении жидких углеводородов в качестве сырья применяются преимущественно нефтяные остатки.
При электрохимическом способе производства водород получается электрохимическом разложением воды (водных растворов).
Физические методы получения водорода представляют в настоящее время преимущественно способы выделения его из газовых смесей ступенчатым охлаждением последних до низких температур, при которых имеет место ожижение компонентов газовой смеси, кроме водорода. Исходными газовыми смесями в данном случае являются коксовый газ, газы гидрирования, отходящие побочные газы установок каталитической ароматизации (риформинга) и метан-водородные фракции [ ].
2.Водород как топливо.
Всем понятно, что запасы нефти и газа рано или поздно кончатся. Можно делать прогнозы, прикидывать, через сколько лет это произойдет, - кто-то остановился на числе 50, кто-то - на 70, а некоторые считают, что удастся протянуть еще лет сто. Но рано или поздно это случится. Последнее время именно элемент номер 1 таблицы Менделеева стал первым кандидатом на роль топлива будущего. Об этом говорят во всех развитых странах, в это вкладывают деньги. Водородная энергетика действительно очень экологична - первый элемент дает при сгорании только воду. Но существующие технологии (как производства самого водорода, так и получения из него электроэнергии) весьма далеки от совершенства.
Гиганты химической индустрии и сегодня уже получают по 500 млрд. м3 водорода в год. Половина производимого количества идет на аммиачные удобрения, остальное - на производство стали, стекла, маргарина… В основном водород получают паровым риформингом природного газа: метан при высоких температурах (900єС) реагирует с паром в присутствии никелевого катализатора. Пока такой водород самый дешевый (его цена ниже, чем у электролизного, примерно в три раза). Исследования последних лет показывают, что цену водорода можно уменьшить еще в два раза: ИВЭПТ РНЦ «Курчатовский институт» вместе с предприятиями Госкомоборонпрома разработал плазмохимический метод получения водорода из природного газа, более дешевый и к тому же с лучшими экологическими параметрами производства. Но если через 10 лет мир начнет постепенно переходить на водородные топливные элементы, водорода надо будет делать намного больше. Если увеличить существующее производство в 25 раз, то это к 2050 году покроет только 20% энергетической потребности в топливе.
Есть и другие технологии получения водорода, помимо риформинга природного газа: например - электролизом, крекингом или из биомассы. Каждый из этих вариантов имеет свои недостатки. Например, переработка биомассы (древесины, соломы): ее нагревают до 500-600єС, после чего получаются спирты - этанол, метанол, которые, в свою очередь, превращаются в водород. Можно нагреть биомассу до более высоких температур (1000єС), тогда она полностью превратится в газ и получится смесь Н2 и СО. Проблема в том, что сырья для такого процесса понадобится очень и очень много. Если, например, всю плодородную землю Франции пустить на выращивание биомассы, то водорода, полученного из нее, не хватит даже для того, чтобы покрыть ее потребности в бензине для ныне существующих автомобилей.
Казалось бы, самый простой способ получения водорода - электролиз воды. Результат - водород и кислород. Но в целом эффективность этого процесса не очень велика: надо потратить 4 кВт, чтобы получить 1 мі водорода, который даст 1,8 кВт в топливном элементе. Тем не менее электролиз воды довольно перспективен, и ему наверняка найдут применение. Во-первых, можно использовать энергию атомной станции в часы слабой нагрузки (когда энергия все равно вырабатывается и оказывается невостребованной) или, в конце концов, возобновляемые источники энергии (солнечные батареи, энергию ветра, прилива и прочие). Во-вторых, эта технология активно развивается: электролиз для большей эффективности можно проводить при повышенном давлении или температуре, что и пытаются сделать ученые.
Сейчас биологи активно разрабатывают еще одно направление. Некоторые бактерии и водоросли в процессе фотосинтеза разлагают воду и выделяют водород. Проблема в том, что они делают это только в отсутствие кислорода, соответственно процесс длится очень короткое время. Задача ученых - с помощью генной инженерии продлить этот период, тогда солнечные районы нашей планеты были бы обеспечены водородом.
Параллельно с техническими проблемами получения водорода надо решать и другие: создавать специальную инфраструктуру, обеспечивающую его хранение и перевозку. Это тоже весьма непростая и недешевая задача, поскольку водород горит и взрывается. Когда в серийном производстве появится водородный автомобиль, именно это станет лимитирующей стадией его внедрения.
Несмотря на трудности, по-видимому, в повседневную жизнь всех граждан скоро войдут топливные элементы на водороде. Слишком велики ставки, слишком большие вложены деньги в их разработку. Приоритетные направления исследований западных фирм - топливные элементы малой мощности (от 500 Вт до 5 кВт) для портативных компьютеров, маленьких автомобилей, домов, а также средней мощности (200 кВт) - для общественного транспорта. Пока они далеки от совершенства и стоят недешево: для автомобиля - в двадцать раз дороже стандартного двигателя, а для обогрева дома - в двенадцать раз дороже своего аналога. Но процесс идет настолько интенсивно, что европейцы обещают через четыре года выбросить на рынок водородный топливный элемент для обогрева дома всего за 6000 евро [ ].
Водород универсален, он является и горючим, и химическим сырьём. Водород удобен при хранении. Даёт возможность гибкого решения проблемы отбора энергии в условиях переменной потребности в нём, имеет высокую теплоту сгорания.
Универсализм водорода состоит в том, что он может заменить любой вид горючего в различных отраслях производства, в промышленности, на транспорте, в энергетике. Он способен заменить природный газ для бытовых целей, бензин - в двигателях внутреннего сгорания, специальные виды горючих - в ракетных двигателях, ацетилен - в процессах сварки металлов, кокс - в металлургических процессах, метан - в топливных элементах, углеводороды - в ряде микробиологических процессов, углерод - во многих процессах, требующих восстановителя. Водород может быть легко использован и на небольших передвижных или стационарных энергетических установках, в газовых турбинах для генерирования электроэнергии и в крупных топках и печах; может и храниться в любых количествах. Его использование в качестве энергоносителя не потребует коренных изменений в современной технологии топливоиспользования.
Использование водорода как энергоносителя позволяет рассматривать и решать энергетические проблемы в тесной связи с экологическими. Создаются благоприятные возможности для уменьшения образования твёрдых отходов, вредных газовых выбросов и ликвидации парникового эффекта. При водородной энергетике кислород, который получается из воды одновременно с водородом, может использоваться для биохимической очисти сточных вод, в качестве окислителя при сжигании твёрдых отходов.
2.1. Физические свойства водорода.
При нормальной температуре водород представляет собой бесцветный газ без запаха. Газофазный водород состоит из 25% пароводорода и 75% ортоводорода. При сжижении водорода происходит самопроизвольная медленная орто - пара конверсия, поэтому жидкий водород практически на 100% состоит из параводорода.
Основные физические показатели водорода [ ]:
Температура кипения………………………………… -252,76єС (20,24 К)
Температура застывания…………………………….. -259,2єС (13,8 К)
Критическая температура…………………………….-239,97єС (32,9 К)
Критическое давление………………………………...1,27 МПА (12,87 кгс/см2 )
Плотность при НУ……………………………………...0,08987 кг/м3
» при температуре кипения……………….....0,07097 г/см3
» при температуре застывания………………0,0896 »
Коэффициент вязкости при температуре:……
застывания…………………………………………240·10-6 сП
кипения……………………………………………..131·10-6 сП
Жидкий водород представляет собой бесцветную жидкость без запаха, отличающуюся высокой степенью криогенности. Водород сжижается при 20 К, а при 14 К переходит в твердое состояние, т. е. в жидкофазном состоянии он находится в узком диапазоне температуры - около 6є. В этой области возможно образование промежуточной формы водорода - шугообразной, представляющей собой смесь жидкого водорода с твердым водородом в виде льда, плавающего в жидкости. Для образования шуги в жидком водороде требуется его небольшое - до 0,7єС переохлаждение. В шугообразной форме плотность водорода повышается до 0,08-0,087 г/см3 и становится максимальной при полном застывании.
Газообразный водород отличается высокой диффузионной способностью. На пример, коэффициент диффузии водорода в воздухе более чем в 3 раза выше по сравнению с такими компонентами, как метан, кислород и двуокись углерода. Среднее значение коэффициента Dо диффузии Н2 в различных средах представлены в таблице 1.
Таблица 1.
|
Среда
|
О2
|
N2
|
СО2
|
СО
|
СН4
|
Воздух
|
|
D0?104, мІ/с
|
0,69
|
0,7
|
0,54
|
0,6
|
0,625
|
0,61
|
|
|
Водород обладает способностью проникновения через толщу материала, в частности металлов. Это отрицательное явление ведущее к ухудшению свойств материала, получило название наводороживание. С повышением давления и температура диффузия водорода в металлы возрастает. Глубина наводораживания, т.е. проникновения молекул водорода в кристаллическую решетку металла, в большинстве случаев не превышает 4-6 мм, а при нагортовке материала может быть снижена до 2-1,5 мм. Для алюминия наводороживание достигает 15-30 мм, а при нагортовке уменьшается до 4-6 мм. В случае сталей водородная диффузия практически полностью устраняется путем легирования с помощью хрома, молибдена, вольфрама и других элементов.
Водородо - воздушные смеси характеризуются широкой областью воспламенения (4-75% по объему) и взрываемости (18,3-74% по объему), что повышает их пожаро- и взрывоопасность. В то же время водород отличается высокой температурой воспламенения (590єС) и способностью к быстрому рассеиванию в воздушной среде, благодаря чему по суммарным показателям безопасности он примерно равноценен природному газу. При загрязнении технологическими примесями взрывоопасность водорода увеличивается. Поэтому основным условием безопасной работы с водородом в закрытых помещениях является контроль за его содержанием в воздухе и возможными утечками.
2.2 Моторные характеристики.
Водород характеризуется наиболее высокими энерго-массовыми показателями среди химических топлив. Низшая теплота сгорания молекулярного водорода (с образованием водяного пара) составляет 241,9 МДж/моль (57740 ккал/моль), что соответствует 120 МДж/кг ( 28640 ккал/кг). С учетом диссоциации при 7,84 МПа расчетная теплота сгорания равняется 117,99 МДж/кг (28160 ккал/кг). Таким образом, водород по массовой энергоемкости превосходит традиционные углеводородные топлива примерно в 2,5-3., спирты-в 5-6 и аммиак-в 7 раз. Однако вследствие очень низкой плотности водорода его объемные энергетические характеристики невысоки даже в криогенной форме (см. таблицу 2.):
Таблица 2.
|
Форма водорода
|
Газ (н.у.)
|
жидкий
|
шугообразный
|
твёрдый
|
|
Теплота
сгорания
|
МДж/мі
|
10,501
|
8373,8
|
9439,2
|
10501,1
|
|
|
ккал/л
|
2,506
|
1998,5
|
2252,8
|
2506,2
|
|
|
Массовая теплопроизводительность водорода - воздушных смесей также превышает теплопроизводительность остальных топлив и составляет 3,298 МДж/кг (787 ккал/кг) при б=1.
Однако из-за низкой энергоплотности водород по объемной теплопроизводительности уступает большинству жидких и газообразных топлив. Теплота сгорания 1м3 стехиометрической водородо-воздушной смеси составляет 3,1 МДж (740ккал), что меньше примерно на 15 и 10% по отношению соответственно к бензинам и спиртам.
Температура самовоспламенения водорода зависит от состава смеси и составляет для стехиометрических композиций 500-510єС [ ]. При этом период задержки воспламенения зависит от коэффициента избытка окислителя и в области Т>1100 К удовлетворительно описывается формулой:
фзд=(2*10?8/Р)*е8600/Т,
где фзд выражено в секундах, а Р - в атмосферах.
Среди горючих газов водород характеризуется наиболее низкой энергией воспламенения (примерно в 70 раз меньше, чем у метана) и высокой скоростью сгорания. Максимальное значение нормальной скорости распространения пламени в водородо-воздушных смесях составляет по различным оценкам 240-270 см/с, причем сильно зависит от температуры (см. таблицу 3.) [ ]:
Таблица 3.
|
Температура
смеси, єС
|
20
|
100
|
200
|
300
|
400
|
|
Скорость
распространения
пламени, см/с
|
250
|
400
|
600
|
900
|
1200
|
|
|
Максимум скорости не соответствует стехиометрическому соотношению, а довольно значительно сдвинут в область избытка содержания водорода, где соответственно кинетическому уравнению осуществляются оптимальные условия для выхода продуктов реакции. В условиях камеры сгорания двигателя скорость горения водородных смесях значительно выше нормальной скорости распространения пламени вследствие повышенных температур и давлений, а также значительной турбулизации горючей смеси. Согласно большинству данных водород начинает детонировать при степенях сжатия е?6 в широком диапазоне б. В то же время очистка камеры сгорания (удаление нагара и выступающих кромок, шлифовка поверхности) позволяет осуществить работу на водороде при е близких 14 и стехиометрических смесях.
Зависимости концентрационных пределов детонации и воспламенения водорода воздушных смесей от степени сжатия приведены на рис.1.
Эти данные получены на стандартной установке CFR по моторному методу при температуре поступающей в двигатель смеси 38єС [ ]. Устойчивое воспламенение водорода обеспечивается в весьма широкой области б, причем богатая граница с увеличением е расширяется, в то время как бедная практически не изменяется. Однако вследствие высокой активности водорода его детонационное сгорание происходит уже при е=6 в области 0,2?б?1,82. Повышение степени сжатия расширяет концентрационные границы детонации до 0,12?б?2,85 при е=15. В данных условиях область отсутствия детонации, представляющая практический интерес, охватывает диапазон топливных смесей с б=2ч5.
Влияние добавок водорода на антидетонационную стойкость углеводородного топлива носит довольно сложный характер. На рис.2, при степени сжатия 12 увеличение концентрации водорода в метане до 60% практически не оказывает влияния на концентрационные пределы детонации [8]. Однако при дальнейшем повышении содержания водорода наблюдается тенденция к детонационному сгоранию, так что при концентрациях Н2 свыше 60% детонация имеет место уже при е=6, а при содержании водорода от 90 до 95 диапазон детонации расширяется почти в 2 раза. Отмечается, что для небольших добавок водорода (до 20%) детонация не наблюдается даже при степенях сжатия 15. при низком соотношении топлива к воздуху изменение пределов детонации при увеличении концентрации водорода в топливной смеси довольно умеренно, в то время как в богатой области предел детонации резко увеличивается с повышением содержания Н2.
Рис.1. Концентрационные пределы водородо - воздушных смесей:
1-воспламенение; 2-детонация.
Рис.2. Концентрационные пределы детонации водородо - метановых смесей:
1-при температуре смеси 156єС; 2-при температуре смеси 38єС.
3. Работа двигателя на водородном топливе.
3.1. Особенности рабочего процесса.
По физико-химическим свойствам и моторным качествам водород сильно отличается от применяемых в настоящее время топлив, что ведет к ряду особенностей в организации и протекании рабочего процесса ДВС.
С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций - вплоть до б=10. Столь низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне изменения составов смеси: примерно от б=0,2 до б=5. В связи с этим мощность водородного двигателя может изменяться качественным регулированием, при котором его КПД на частичных нагрузках увеличивается на 25 - 50% [9].
Однако, если максимальное значение эффективного КПД двигателя при работе на водороде выше, чем при работе на бензине, то эффективная мощность заметно падает [10]. Последнее обусловлено очень низкой плотностью водорода, что приводит к уменьшению наполнения двигателя топливом. Например, при стехиометрическом составе смеси газообразный водород, подаваемый вместе с воздухом, занимает почти 30% объема цилиндра, тогда как распыленный и испаренный бензиновый заряд только 2- 4%. В целом перевод на водород вызывает снижение мощности двигателя в среднем на 20-25%. Наряду с этим применение водорода ведет к существенному увеличению эмиссии окислов азота с ОГ, основной причиной которого является повышение температуры и скорости сгорания [ ].
Температура воспламенения водородных смесей выше, чем углеводородных, однако благодаря более низким значениям энергии активации для воспламенения водорода требуется меньшее количество энергии. Сравнительные характеристики параметров воспламенения
различных топлив в двигателе с принудительным воспламенением приведены в табл. 4 [ ].
Таблица 4.
Характеристики воспламенения некоторых топлив
|
Показатель
|
Водород
|
Изооктан
|
Метан
|
|
Температура воспламенения, К
|
858
|
810
|
530
|
|
Потенциал ионизации, эВ
|
15,4
|
12,6
|
9,86
|
|
Минимальная энергия воспламенения, мДж
|
0,02
|
0,28
|
0,23
|
|
|
Водородно-воздушные смеси характеризуются высокой скоростью сгорания в двигателе (табл.5), причем в стехиометрической области периоды индукции очень малы и сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления.
Скорость нарастания давления в цилиндре водородного двигателя для стехиометрических смесей почти в 3 раза выше по сравнению с бензиновым эквивалентом. При обеднении смеси она снижается и для б=1,9 достигает значений скорости нарастания давления при работе на стехиометрических смесях [ ].
Высокая реакционная способность водорода в ряде случаев приводит к обратным проскокам пламени во впускной трубопровод, преждевременному воспламенению и жесткому сгоранию топливных смесей. В значительной степени эти недостатки могут быть ликвидированы путем соответствующей модификации топливоподающей
Таблица 5.
Характеристики сгорания топливных смесей в ДВС.
|
Двигатель
|
Скор
Скоростной
режим, мин-1
|
С
Степень
сжатия
|
Скорость
распростра
нения
пламени,
м/с.
|
Время
сгорания,
град. ПКВ
|
|
Водородный
»
Бензиновый
»
|
1500
1500
1500
1500
|
12
14
12
14
|
48,3
51,6
16,45
16,0
|
15,7
14,4
41,0
42,2
|
|
|
системы двигателя. В настоящее время для подачи водорода в ДВС применяются следующие способы:
впрыск во впускной трубопровод;
использование модифицированного карбюратора, применяемого в системах питания пропан-бутановыми и природными газами;
индивидуальное дозирование водорода в область впускного клапана каждого цилиндра;
непосредственный впрыск под высоким давлением в камеру сгорания;
Первые два способа обеспечивают устойчивую работу двигателя лишь совместно с такими мероприятиями как частичная рециркуляция ОГ, присадка воды к топливному заряду, а также добавка к нему
Рис.3.Устройства для дозирования водорода под впускной клапан.
бензина. Частичная рециркуляция ОГ за счет разбавления заряда инертными компонентами предотвращает обратные вспышки и смягчает сгорания при работе двигателя на стехиометрических и богатых смесях. Количество рециркулируемых газов, как правило, не превышает 10-20% от поступающего в двигатель топливного заряда, однако любая степень рециркуляции ведет к дополнительным потерям наполнения цилиндра. В отличие от рециркуляции ОГ добавление воды или бензина (обычно впрыском во впускной трубопровод) не приводит к ухудшению наполнения двигателя.
Типичные два варианта индивидуального дозирования водорода показаны на рис.3. В конструкции (рис. 3,а) подача Н2 в камеру сгорания происходит следующим образом. На такте всасывания впускной клапан открывается, освобождая тем самым расходные отверстия трубопроводов 4, подающих водород [ ]. Под действием разряжения в цилиндре водород всасывается в камеру сгорания. Так как в системе впуска отсутствуют дросселирующие участки, величины разряжения при впуске будут несколько снижены, благодаря чему снижается количество масла, засасываемого через поршневые кольца в камеру сгорания и сгорающего вместе с топливом. Это приводит к уменьшению вредных выбросов ДВС, особенно при старении двигателя и износе поршневых колец. По другому варианту конструкции (рис.3,б) дозирующее устройство обеспечивает впрыск водорода непосредственно на впускной клапан 3 [ ]. Центральный поршенек 2 поддерживается в постоянном контакте с поверхностью впускного клапана посредством легкой пружины 1 и давления газа, которое составляет примерно 0,1 МПа. Устройство отрегулировано таким образом, что отверстия для впуска Н2 открываются позже впускного клапана 3, а закрываются раньше, при этом время их открытия соответствует половине времени открытия впускного клапана.
Наилучшие результаты дает организация впрыска водорода непосредственно в камеру сгорания. При этом полностью исключаются обратные вспышки во впускном трубопроводе, а максимальная мощность не только не снижается, но даже может быть повышена на 10-15% [ ].
Использование водорода в дизельных двигателях затрудняется его высокой температурой самовоспламенения. Поэтому для организации устойчивого воспламенения водорода дизели конвертируются в двигатели с принудительным зажиганием от свечи или запальной дозы жидкого топлива. При этом водород может подаваться как совместно с воздухом, так и путем непосредственного впрыска в цилиндры. Однако устойчивая работа дизеля на водороде обеспечивается только в узком диапазоне топливных смесей, ограниченном пропусками воспламенения и детонацией. В случае газожидкостного процесса граница детонации (см. рис.4) определяется составом смеси и ее температурой [ ]. Повышение дозы запального топлива улучшает антидетонационную стойкость смеси и в то же время расширяет границы воспламенения. Поэтому нормальная работа водородного дизеля возможна только при строго определенном минимальном расходе запального топлива, определяемом режимом работы и составом смеси.
Следует отметить, что при работе ДВС на водороде значительно уменьшается выделение твердых частиц примерно в 1000 раз по сравнению с бензином. Благодаря этому, а также отсутствию органических кислот, образующихся при сжигании углеводородов, увеличивается срок службы двигателя и сокращаются затраты на его ремонт.
Рис.4. Границы устойчивой работы дизельного двигателя на водороде:
1-детонация; 2-воспламенение.
3.2. Работа ДВС на чистом водороде.
Согласно результатам, полученным при индицировании одноцилиндрового двигателя, работающего на водороде, при обеднении топливной смеси динамика нарастания давления резко падает, а при значениях б>3,5 остается практически постоянной. Напротив, величина задержки воспламенения растет, главным образом, за счет увеличения времени саморазгона реакций сгорания при уменьшении концентрации водорода в топливной смеси. В связи с этим при б>1,8 появляются колебания максимального давления в цикле, которые при б>4,5 приводят к неустойчивой работе водородного двигателя. Неустойчивость также имеет место при обогащении топливо-воздушной смеси, однако обусловливается в этом случае чрезмерно высокими скоростями нарастания давления при сгорании. Подобное неустойчивое сгорание обычно связано со слышимыми «стуками» и мгновенными колебаниями скорости вращения вала двигателя.
Особо следует остановиться на явлениях преждевременного воспламенения и обратных вспышек во впускном трубопроводе водородного двигателя. Причинами преждевременного воспламенения могут быть перегрев источника зажигания, масляный нагар, а также индуктивные наводки в проводах и других элементах системы зажигания. Обратные вспышки - характерный недостаток большинства систем дозирования водорода во впускной трубопровод. Они происходят на такте впуска вследствие воспламенения водородо-воздушной смеси от отдельных перегретых точек свечи зажигания, а также от горячих остаточных газов. Снижение частоты появления обратных вспышек может быть достигнуто посредством увеличения степени сжатия ( с целью уменьшения количества остаточных газов) или установкой специальной свечи зажигания. При использовании обычной свечи зажигания водородный двигатель устойчиво работает в очень узком диапазоне изменения б, тогда как модифицированная свеча зажигания обеспечивает его нормальную работу, начиная с б=1,55. Что касается показателей работы двигателя на соответствующих режимах, то они практически идентичны на обоих типах свечей.
При дозировании водорода во впускной трубопровод сгорание топливных смесей вблизи стехиометрического состава происходит с очень высокими скоростями и практически без задержки воспламенения. Кроме того, в этой области имеется тенденция к преждевременному воспламенению. В результате указанные факторы приводят к остановке водородного двигателя при обогащении топливной смеси. Характерно, что на оборотах ниже примерно 0,7 от номинальных двигатель останавливается без появления обратных вспышек. Причиной остановки двигателя в этом случае является раннее завершение процесса сгорания, вследствие чего работа газа на ходе сжатия получается больше, чем на ходе расширения. С другой стороны, при оборотах двигателя, близких к номинальным, возможно обогащение топливной смеси вплоть до б=1. Однако дальнейшее обогащение топливного заряда в этих условиях приводит к появлению обратных вспышек и остановке двигателя, что связано с перегревом элементов камеры сгорания, ведущим к преждевременному воспламенению водородо-воздушной смеси.
Для получения удовлетворительных мощностных показателей водородного двигателя, а следовательно, обеспечения его устойчивой работы в области б?1, в первую очередь необходимо снизить температурную напряженность рабочего цикла. С этой целью целесообразно увеличивать рабочий объем цилиндров двигателя, что, в частности, позволяет предотвратить самовоспламенение благодаря снижению температуры стенок цилиндров. Хорошие результаты дают охлаждение зоны выпускного клапана, а также использование «холодной» свечи зажигания, снижающие тенденции водородных двигателей к детонации при работе на стехиометрических смесях. Однако наилучшие показатели двигателя обеспечиваются при использовании управляемой подачи (впрыска) водорода непосредственно в камеру сгорания. Помимо полного устранения обратных вспышек и преждевременного воспламенения смеси, при этом обеспечиваются более приемлемые скорости нарастания давления в цикле даже в области стехиометрических соотношений.
В случае обеднения смеси при подаче водорода во впускной трубопровод на режимах малых нагрузок и холостого хода также имеют место обратные вспышки, однако они не приводят к остановке двигателя и проявляются только в колебаниях его оборотов. Частота обратных вспышек на этих режимах не зависит от типа свечи зажигания, так как основной причиной появления неустойчивости данного типа является относительно большое количество кислорода в остаточных газах, с которым активно реагирует водород в момент подачи в камеру сгорания [ ].
Максимум индикаторного КПД водородного двигателя имеет место при б=2,5ч2,7 и при дальнейшем обеднении смеси несколько снижается [ ]. При этом оптимальный угол опережения зажигания изменяется в довольно широких пределах, например, при увеличении б от 1,0 до 3,1 соответственно от 1,5 до 25є при 1500 об/мин. Вследствие высокой скорости сгорания водорода оптимальный угол опережения зажигания даже для ультрабедных водородо-воздушных смесей ( б=3,0ч3,5) не превышает оптимум угла опережения зажигания бензо-воздушных смесей с б=1,1.
Состав отработавших газов водородного двигателя существенно отличается от состава отработавших газов бензинового ДВС в основном за счет отсутствия углерода в топливе. Тем не менее в выхлопных газах водородного ДВС присутствует незначительное количество СО и СН (см. рис 5), наличие которых обусловлено выгоранием
Рис.5. Состав отработавших газов водородного двигателя:
1-богатая граница устойчивой работы на водороде; 2-бедная граница устойчивой работы на изооктане; 3-бедная граница работы на водороде.
углеводородных смазок, попадающих в камеру сгорания. Максимальная величина эмиссии NOх вследствие более высоких температур сгорания водорода примерно вдвое выше, чем у бензинового двигателя.
Добавка к водородному топливу воды позволяет резко снизить содержание окислов азота в ОГ без существенных потерь мощности двигателя или ухудшения его КПД.
3.3 Работа ДВС на бензо-водородных смесях.
В этом случае благодаря повышению реакционной способности топливо-воздушной смеси появляется возможность работы двигателя, как и в случае чистого водорода, на переобедненных смесях, главным образом в области частичных нагрузок и режиме холостого хода. Согласно экспериментальным данным [ ], зависимость эффективного предела обеднения бензо - водородных смесей от количества добавок водорода носит нелинейный характер:
Содержание Н2, % по массе…………
Нижняя граница устойчивой работы 0 10 20 40 100
ДВС, б……………………………... 1,12 1,67 2,5 3,34 5,0
Поэтому наиболее целесообразно использование топливных смесей с добавкой водорода до 20% по массе, соответствующих пределу обеднения порядка б=2,5. Этот предел эффективного обеднения определен при условии устойчивой работы двигателя без пропусков сгорания. Пропуски сгорания достаточно точно могут быть определены по моменту резкого возрастания концентрации СН в ОГ ДВС, а также значительным колебаниям давления с понижением температуры в выпускном коллекторе.
На рис. 6 показано изменение состава ОГ по б при работе дви гателя на добавках водорода, соответствующих рассмотренным
Рис.6. Изменение состава ОГ при работе двигателя на водородо - изооктановых смесях в области предельного обеднения.
нижним пределам обеднения топливной смеси [ ]. До б=1,1 двигатель работает на чистом изооктане, затем постепенно наращивается процент водорода в смеси вплоть до перехода на чистый водород. Изменение количества окислов азота при этом практически соответствует количеству NOх в ОГ при работе ДВС на чистом водороде: при б>1,8 концентрация NOx незначительна. Что касается эмиссии углеводородов, то после достижения минимума при б=1,25 по мере дальнейшего обеднения смеси их количество в ОГ снова возрастает, отражая тем самым увеличение недогорания углеводородного топлива. В то же время работа двигателя в ультрабедной области лишь незначительно сказывается на эмиссии СО. Значение индикаторного КПД двигателя при переходе к переобедненным смесям возрастает от 33% для б=1 до 37% при б=1,8, а индикаторная мощность уменьшается в том же диапазоне на 30% за счет снижения количества подведенного тепла.
При организации работы автомобиля на бензо - водородных смесях могут быть использованы следующие способы дозирования водорода: 1) постоянная подача неизменного количества водорода независимо от режима работы двигателя; 2) регулируемая подача водорода, поддерживающая его определенную долю в топливной смеси (например, 10% от количества бензина на всех режимах работы двигателя).
Первый вариант дозирования отличается простотой, так как в этом случае требуется лишь дозирующая шайба, обеспечивающая определенный расход водорода на номинальном режиме работы двигателя. Для поддержания исходной теплопроизводительности топливной смеси количество подаваемого бензина следует уменьшать, в частности посредством отключения системы холостого хода карбюратора. Необходимая работоспособность двигателя на холостом ходу и режимах малых нагрузок успешно обеспечивается водородо - воздушными смесями. На рис.6 представлено изменение параметров топливной смеси в эмиссии NOx при различных скоростях движения с постоянным расходом добавки водорода, равным 18 г/мин [ ]. На основании этих данных можно заключить, что выброс NOx при движении автомобиля со скоростью 30 км/ч примерно в 5 раз больше, чем при движении со скоростью 60-100 км/ч. Эта закономерность обусловлена обогащением топливной смеси при низких скоростях движения автомобиля из-за постоянного расхода водорода.
Для поддержания постоянного соотношения «водород/топливо» и состава смеси на всех режимах работы требуется система дозирования водорода и бензина в соответствии с изменением расхода воздуха. Для этой цели может быть использован газовый редуктор в комбинации с бензиновым карбюратором. Результаты испытаний автомобиля с комбинированной системой подачи водорода и бензина представлены на рис.7.б. Добавка водорода на всех режимах поддерживалась практически постоянной - 10%, тогда как состав смеси изменялся от б=1,8 на холостом ходу до б=1,5 на скорости автомобиля 100 км/ч. Это сравнительно небольшое обогащение смеси на высоких скоростях движения ведет к существенному увеличению выбросов NOx. . Тем не менее в условиях городского движения с низкими и средними скоростями этот способ дозирования, несомненно, обеспечивает более приемлемые уровни эмиссии NOx с ОГ автомобиля. Это подтверждается результатами испытания [ ] автомобилей с рассмотренной системой дозирования топлива по стандартному ездовому циклу:
Компонент ОГ……………… NOx СО СН
Удельный выброс, г/км……. 0,24 2,1 1,9
Снижение добавок водорода до 5% позволяет сохранить максимальную мощность двигателя при определенном улучшении его экономических и токсических характеристик.
Рис.7. Характеристики топливной смеси и выбросы окислов азота при работе двигателя с различными способами добавки водорода:
а-постоянная добавка; б-регулируемая добавка.
4. Водородные автомобили.
Многочисленные схемы возможного применения водорода на автомобиле делятся на две группы: в качестве основного топлива и как добавки к современным моторным топливам. В рамках этих вариантов водород может использоваться в чистом виде (т.е. индивидуально) либо в составе вторичных энергоносителей. Водород как основное топливо является более далекой перспективной, связанной с переходом автомобильного транспорта на принципиально новую энергетическую базу. В то же время применение водородных добавок, позволяющих улучшить экономические и токсические показатели автомобильных двигателей, может быть реализовано в самое ближайшее время.
Америка поставила себе задачу: в ближайшие 10 - 15 лет избавиться от нефтяной зависимости. Единственный выход - как можно скорее запустить в серийное производство водородный автомобиль. Европа боится отстать, кроме того, европейцам приходится выполнять принятые у них нормы на выброс вредных веществ автотранспортом, которые все время ужесточаются. В 1993 году были введены нормы «Евро-1», в 1996 году - «Евро-2», в 1999 году - «Евро-3», а с 2005 года в Европе планируется ввести в действие еще более жесткие нормы - «Евро-4». В перспективе автомобилям совсем запретят выбрасывать вредные вещества, и тогда нельзя будет обойтись без машины, работающей на водороде. Автомобилестроение - это область, в которой как нигде перемешаны политика, интересы крупных корпораций, социология и экология. Но каковы бы ни были скрытые интересы сторон, гонка за водородным автомобилем началась.
Главное препятствие к внедрению водородного автомобиля на топливных элементах - отсутствие инфраструктуры промышленного получения водорода в нужных объемах, систем его хранения, транспортировки и заправки автомобилей. По мнению американских специалистов, такую инфраструктуру удастся создать не раньше чем в 2020 - 2030 гг. На переходный период ведущие автопроизводители предложат так называемые «гибридные автомобили»: в них экономичный двигатель внутреннего сгорания подзаряжает аккумуляторную батарею, которая питает электрический двигатель. Такие автомобили разрабатывают практически все ведущие автомобильные компании и уже серийно выпускают в Японии.
Россия в 1987 году присоединилась к Женевскому соглашению и теперь тоже обязана выполнять Европейские нормы выброса вредных веществ автотранспортом. И хотя у нас эти нормы вводят с некоторым опозданием («Евро-1» - с 1999 года, «Евро-2» - с 2001 года), «процесс пошел». В общем-то пора: в Москве и других крупных городах более 80% токсичных выбросов приходится на долю автотранспорта. Поэтому мы в гонке водородных автомобилей обязательно примем участие, тем более что когда - то наши разработки в этой области были на весьма высоком уровне: например, в 90-х годах прошлого столетия в ГНЦ РФ НАМИ сделали образец «Москвича», с двигателем, работающем на водороде, который получали прямо на борту из метанола. Более того, недавно на АвтоВАЗе сделали образец электромобиля, работающего на водородных топливных элементах. С 2001 года в странах Евросоюза для всех н ...........
Страницы: [1] | 2 |
|