Главная   Добавить в избранное Виконання операцій множення і ділення у двійковій системі числення | учебное пособие


Бесплатные Рефераты, дипломные работы, курсовые работы, доклады - скачать бесплатно Бесплатные Рефераты, дипломные работы, курсовые работы, доклады и т.п - скачать бесплатно.
 Поиск: 


Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Контрольные работы
Доклады
Практические работы
Шпаргалки
Аттестационные работы
Отчеты по практике
Научные работы
Авторефераты
Учебные пособия
Статьи
Книги
Тесты
Лекции
Творческие работы
Презентации
Биографии
Монографии
Методички
Курсы лекций
Лабораторные работы
Задачи
Бизнес Планы
Диссертации
Разработки уроков
Конспекты уроков
Магистерские работы
Конспекты произведений
Анализы учебных пособий
Краткие изложения
Материалы конференций
Сочинения
Эссе
Анализы книг
Топики
Тезисы
Истории болезней

 



Виконання операцій множення і ділення у двійковій системі числення - учебное пособие


Категория: Учебные пособия
Рубрика: Коммуникации, связь, цифровые приборы и радиоэлектроника
Размер файла: 615 Kb
Количество загрузок:
47
Количество просмотров:
2979
Описание работы: учебное пособие на тему Виконання операцій множення і ділення у двійковій системі числення
Подробнее о работе: Читать или Скачать
Смотреть
Скачать



РЕФЕРАТ

на тему:”ВИКОНАННЯ ОПЕРАЦІЙ МНОЖЕННЯ І ДІЛЕННЯ В ДВІЙКОВІЙ СИСТЕМІ ЧИСЛЕННЯ

ВИКОНАННЯ ОПЕРАЦІЙ МНОЖЕННЯ І ДІЛЕННЯ В ДВІЙКОВІЙ СИСТЕМІ ЧИСЛЕННЯ

1. ЗАГАЛЬНІ ВІДОМОСТІ ПРО ОПЕРАЦІЮ МНОЖЕННЯ

У програмах розвязання різних задач операції множення зустрічаються рідше, ніж додавання і віднімання, разом узяті. Проте для багатьох задач виявляється, що більшу частину часу машина зайнята виконанням множень, тому що одне множення вимагає, як правило, більше часу, ніж одне додавання або віднімання. Тому методам виконання множення, способам його прискорення і раціональній побудові пристроїв для множення завжди приділялася значна увага в розробках і в теоретичних дослідженнях з цифрової техніки.

Одним з найдавніших вважається давньоєгипетський спосіб множення, що заснований на використанні операції подвоєння. Для визначення добутку С додатних чисел А і В за цим способом спочатку обчислюють шляхом подвоєння усі можливі значення (і = 0, 1, 2, .., k) і А доти, поки не буде виконана умова 2k+l >В. Значення С визначають як суму тих часткових добутків А, для яких входить до представлення числа В. Хоча в цьому способі використовуються елементи двійкового множення, числа А и В представляються в системі числення з довільною основою р >2.

Приклад 3.1. Помножити числа А = 25 і В = 43.

Розвязання. Складаються три стовпчики. В лівому стовпчику розташовуються степені двійки, де зірочками позначені ті числа, з яких складається число В = 43. У середньому стовпчику перше число дорівнює А, а кожне наступне є подвоєним попереднім числом. У правому стовпчику знаходяться часткові добутки, що відповідають поміченим числам лівого стовпчику. Результат множення утворюється додаванням чисел правого стовпчику.

Відповідь: С = 1075.

Найвідомішим є "шкільний" метод множення в стовпчик. Для двійкової системи числення він має два варіанти.

Множення починається з молодших розрядів множнику:

Множення починається зі старших розрядів множнику:

В обох випадках операція множення полягає в додаванні часткових добутків, що утворюються множенням цифр множнику на зсунене на відповідну кількість розрядів множене.

Найпростіше множення виконується у прямому коді. У разі представлення чисел з фіксованою комою воно реалізується у два етапи. На першому етапі визначається знак добутку шляхом додавання за модулем два цифр знакових розрядів співмножників (див. табл. 3.1). На другому етапі здійснюється множення модулів співмножників, потім, у разі потреби, округлення модуля добутку, після чого до модуля результату дописується його знак, що визначений на першому етапі. Множення цифр розрядів співмножників виконується згідно таблиці двійкового множення, що наведена у параграфі 2.1.

Таблиця 3.1 - Правила визначення знаку добутку

Обчислення вручну

Обчислення в машині

3.2. МНОЖЕННЯ ЧИСЕЛ, ЩО ПРЕДСТАВЛЕНІ В ФОРМІ З ФІКСОВАНОЮ КОМОЮ

3.2.1. Прості методи множення

Нехай - модуль множеного, - модуль множника. Тоді, у разі представлення чисел у формi з фіксованою комою, модуль добутку визначається за формулою:

. (3.1)

Звідси випливає, що процес множення полягає у нагромадженні часткових добутків , яким керують цифри множника . Керування процесом множення може починатись як з молодших розрядів множнику, так і зі старших.

З урахуванням цього розглянемо прості методи множення.

Метод 1. Перетворимо формулу (3.1) до такого вигляду:

.

Звідси випливає, що множення зводиться до п-кратного виконання циклу:

,

де ,

для початкових значень

.

Це означає, що множення починається з молодших розрядiв множника i множене зсувається вліво на один розряд в кожному циклi. При цьому до суми часткових добутків додається або зсунене множене, якщо =1, або нуль, коли =0. Після завершення п-го циклу утворюється остаточний результат множення. Тобто

.

Реалізація даного методу вимагає (рис. 3.1) 2п-розрядного зсувового регістру множеного РгА, п-розрядного зсувового регістру множнику РгВ, 2п схем І, що пропускають код із виходу регістра РгА на вхід 2п-розрядного нагромаджувального суматора НСМ коли =1 і забороняють його надходження коли =0. Тут чергова цифра множника, що керує додаванням часткових добутків, береться з молодшого розряду регістра множника.

Оскільки зсув кодів у регістрах РгА і РгВ може виконуватись одночасно з додаванням у нагромаджувальному суматорі НСМ, то час множення п-розрядних кодів за даним методом дорівнює:

. (3.2)

Тут ураховано те, що в машинах завжди час додавання більше, ніж час зсуву коду .

Рис. 3.1. Структурна схема пристрою, що реалізує множення за методом 1

Приклад 3.2. Помножити числа А = - 0, 10100 і В = 0, 10011, використовуючи метод 1.

Розвязання. Для даних чисел маємо: =1; = 0, 10100; =0; = 0, 10011. Визначаємо знак добутку: =10=1.

Усі дії, що виконуються в кожному циклі множення, зручно подати у вигляді таблиці (табл. 3.2).

Відповідь: С= - 0, 0101111100.

Метод 2. Представимо (3.1) у вигляді:

.

Обчислення добутку за цією формулою зводиться до п-кратного виконання циклу:

;

для початкових значень

.

Звідси випливає, що множення починається зі старших розрядiв множника i множене зсувається вправо на один розряд в кожному циклi. При цьому до суми часткових добутків додається або зсунене множене, якщо =1, або нуль, коли =0. Після завершення п-го циклу утворюється остаточний результат множення .

Таблиця 3.2 - Приклад множення за методом 1

Для реалізації даного методу множення потрібні (рис.3.2) 2п-розрядний регістр множеного РгА з колами для зсуву вправо, п-розрядний регістр множника РгВ з колами для зсуву вліво, 2п схем І і 2п-розрядний нагромаджувальний суматор НСМ. Тут чергова цифра множника, що керує додаванням часткових добутків, береться зі старшого розряду регістра множника.

Час множення за даним методом дорівнює:

. (3.3)

Рис. 3.2. Структурна схема пристрою, що реалізує множення за методом 2

Приклад 3.3. Помножити числа А = - 0, 10100 і В = - 0, 10011, використовуючи метод 2.

Розвязання. Для даних чисел маємо: =1; = 0, 10100; =1; = 0, 10011. Визначаємо знак добутку: =11=0. Усі дії, що виконуються під час множення, наведені у табл. 3.3.

Відповідь: С= 0, 0101111100.

Метод 3. Перетворимо (3.1) за схемою Горнера для обчислення поліномів:

=

=.

Звідси випливає, що множення зводиться до п-кратного виконання циклу:

для початкових значень .

Таблиця 3.3 - Приклад множення за методом 2

У кожному циклі до суми часткових добутків додається або множене, якщо =1, або нуль, коли =0, після чого сума часткових добутків помножується на , тобто зсувається на один розряд управо. Після завершення п-го циклу утворюється остаточний результат множення . Звідси випливає, що множення починається з молодших розрядiв множника i зсувається сума часткових добутків управо на один розряд в кожному циклi.

Для реалізації даного методу множення потрібні (рис.3.3) п-розрядний регістр множеного РгА, п-розрядний регістр множника РгВ з колами для зсуву вліво, п схем І і (2п+1)-розрядний нагромаджувальний суматор НСМ з колами для зсуву вправо. Тут множене завжди додається до п старших розрядів суми часткових добутків. Один додатковий розряд ліворуч у НСМ необхідний для запамятовування цифри переповнення, що може виникнути в процесі додавання; під час наступного зсуву ця цифра піде в старший з основних розрядів нагромаджувального суматора, так що в остаточному результаті переповнення не буде.

Рис. 3.3. Структурна схема пристрою, що реалізує множення за методом 3

Оскільки в кожному циклі в нагромаджувальному суматорі НСМ спочатку виконується додавання, а потім зсув коду, то час множення п-розрядних кодів за даним методом дорівнює:

. (3.4)

Приклад 3.4. Помножити числа А = 0, 11100 і В = 0, 10011, використовуючи метод 3.

Розвязання. Для даних чисел маємо: =0; = 0, 11100; =0; = 0, 10011. Визначаємо знак добутку: =00=0. Послідовність дій, що виконуються для одержання модулю добутку, показано в табл. 3.4.

Таблиця 3.4 - Приклад множення за методом 3

Відповідь: С= 0,1000010100.

Особливість даного методу множення полягає в тому, що в кожному циклі визначається одна вірогідна цифра добутку (починаючи з наймолодшого розряду), яка не змінюється в інших циклах множення. Врахування цього дозволяє зменшити кількість розрядів нагромаджувального суматора вдвічі, обчислюючи 2п-розрядний добуток. При цьому для зберігання вірогідних цифр використовуються розряди регістра множника, що звільняються в процесі множення. Структурна схема такого пристрою для множення наведена на рис. 3.4. Тут вихід молодшого розряду нагромаджувального суматора НСМ зєднаний з входом старшого розряду регістра множника РгВ. Цим самим утворюється спільний зсувовий регістр. Старші розряди добутку формуються в НСМ, а молодші в РгВ.

Рис. 3.4. Структурна схема модифікованого пристрою, що реалізує множення за методом 3

Приклад 3.5. Описати множення чисел А = 0, 11100 і В = 0, 10011, що реалізується модифікованим пристроєм.

Розвязання. Для даних чисел маємо: =0; = 0, 11100; =0; = 0, 10011. Визначаємо знак добутку: =00=0. Послідовність дій, виконуваних у процесі множення, наведено в табл. 3.5.

Відповідь: С= 0,1000010100.

Метод 4. Якщо перетворити (3.1) за схемою Горнера до вигляду:

,

то множення зведеться до п-кратного виконання циклу:

для початкових значень .

У кожному циклі до суми часткових добутків додається або множене, якщо =1, або нуль, коли =0, після чого сума часткових добутків зсувається на один розряд вліво. Тобто множення починається зі старших розрядiв множника i зсувається сума часткових добутків вліво на один розряд в кожному циклi.

Таблиця 3.5 - Приклад множення з використанням модифікованого пристрою

Для реалізації даного методу множення потрібні (рис.3.5) п-розрядний регістр множеного РгА, п-розрядний регістр множника РгВ з колами для зсуву вліво, п схем І і 2п-розрядний нагромаджувальний суматор НСМ з колами для зсуву вліво. Тут множене завжди додається до п молодших розрядів суми часткових добутків.

Враховуючи те, що в кожному циклі в нагромаджувальному суматорі НСМ спочатку виконується додавання, а потім зсув коду, маємо такий час множення п-розрядних кодів за даним методом:

. (3.5)

Рис. 3.5. Структурна схема пристрою, що реалізує множення за методом 4

Приклад 3.6. Помножити числа А = 0, 10100 і В = 0, 10011, використовуючи метод 4.

Розвязання. Для даних чисел маємо: =0; = 0, 10100; =0; = 0, 10011. Визначаємо знак добутку: =00=0. Послідовність дій, виконуваних у процесі множення, наведено у табл. 3.6.

Відповідь: С= 0, 0101111100.

Аналіз описаних методів множення і пристроїв, що їх реалізують показує таке.

Тривалість процесу множення за першим і другим методами менше, ніж за третім і четвертим, за рахунок суміщення у часі операцій додавання часткових добутків і зсувів множеного.

За кількістю апаратури перевагу варто віддати модифікованому пристрою, що реалізує третій метод множення.

Пристрій, що реалізує перший метод множення виявляється дуже не ощадливим за кількістю необхідної апаратури. Крім того, розряди суматора НСМ використовуються неефективно: у початкових циклах множення старші розряди зайняті увесь час "додаванням" нулів, наприкінці множення на молодші розряди надходять з регістра РгА нулі, тобто ніяких корисних операцій вони фактично не роблять.

Таблиця 3.6 - Приклад множення за методом 4

У той же час цей пристрій є вигідним з такої точки зору. До початку множення можна записати в суматор НСМ замість нуля яке-небудь інше число (скажемо, результат попереднього множення). Тоді в результаті множення можна одержати у суматорі НСМ замість добутку значення суми +. Це дозволяє легко організувати нагромадження суми парних добутків чисел . У модифікованому пристрої, що реалізує третій метод, цього зробити не можна, тому що в процесі множення початковий вміст суматора НСМ зсувається п раз управо.

На підставі вищевикладеного можна вважати найбільш зручними для застосування в ЦОМ пристрої, які реалізують перший і третій методи множення, що і підтверджується практикою розробки обчислювальних пристроїв.

3.2.2. Метод скороченого множення

Усі розглянуті методи множення забезпечують одержання добутку розрядністю 2п, не вносячи при цьому похибок у результат. Якщо послідовно буде виконуватись декілька операцій множення, то розрядність результатів буде значно збільшуватись. Тому після виконання операції множення, як правило, здійснюється округлення. Якщо висувається вимога, щоб похибки добутків не перевищували одиниці молодшого розряду (), то можна значно скоротити розрядність регістра множеного РгА і нагромаджувального суматора НСМ. У спеціалізованих машинах іноді реалізують метод скороченого множення, починаючи зі старших розрядів. Особливість цього методу полягає в тому, що одержуються п точних розрядів добутку з використанням розрядів у суматорі НСМ і регістрі РгА.

Кількість додаткових розрядів визначається виходячи з таких міркувань. Нехай і . Тоді, якщо всі , то

Припустимо, що всі розряди, які розташовані праворуч від вертикальної лінії, відкидаються. Якщо додавати тільки n розрядів, то вноситься похибка, тому що не враховуються перенесення з відкинутих розрядів у розряди, які розташовані ліворуч від лінії. Ці перенесення можуть поширитися на k розрядів ліворуч від лінії. Якщо всі , то кожен розряд дає одиницю перенесення і загальна кількість одиниць перенесень з відкинутої частини буде дорівнювати

.

Для досить великих значень n маємо: .

Одиниці перенесень поширяться на k розрядів суматора, і добуток буде містити тільки точних розрядів. Отже, щоб одержати результат з точністю до n розрядів, необхідно виділити розрядів у суматорі НСМ і регістрі РгА. Кількість додаткових розрядів k при цьому визначається за формулою:

. (3.6)

Нижче приведені результати розрахунку за (3.6) :

п

24

32

40

48

64

72

k

5

5

6

6

6

7

3.2.3. Множення обернених кодів чисел

Операцію множення найпростіше виконувати в прямих кодах чисел. Разом з тим застосування обернених кодів дозволяє істотно спростити операцію алгебричного додавання. Тому числа бажано зберігати в запамятовувальному пристрої в оберненому коді і множити також обернені коди. Розглянемо правила множення операндів, що представлені в оберненому коді.

Нехай множене А - будь-яке число, а множник B > 0, тобто А = [A]об і [В]об . Тоді

.

Згідно з теоремою про додавання обернених кодів можна стверджувати, що права частина цього співвідношення відповідає оберненому коду результату.

Розглянемо випадок, коли множене А - будь-яке число, а множник B < 0, тобто А=[A]об і [В]об . Виходячи з означення оберненого коду . Отже,

.

Тоді

.

Таким чином, у загальному випадку, добуток одержується відразу зі знаком.

Виходячи з розглянутих випадків, можна зробити такі висновки.

Дії, що виконуються під час множення обернених кодів, залежать від знаку множника.

Добуток обернених кодів співмножників дорівнює оберненому коду результату тільки у випадку додатного множника.

Якщо множник є відємним числом, то обернений код добутку одержується додаванням поправок і до добутку обернених кодів співмножників.

Оскільки поправки мають різну вагу, то послідовність їх додавання залежить від того, з яких розрядів множника починається множення (табл. 3.7).

Приклад 3.7. Помножити обернені коди чисел А = - 0, 10100 і В = 0, 10011, використовуючи метод 1.

Розвязання. Для даних чисел маємо: [А]моб=11,01011; [В]об= 0,10011. Оскільки B>0, то поправки не додаються. Послідовність дій, що виконуються в процесі множення, подані у вигляді табл. 3.8.

Відповідь: [С]моб =11,1010000011; С= - 0, 0101111100.

Таблиця 3.7 - Послідовність додавання поправок для оберненого коду

Методи множення

Е т а п и

З молодших розрядів множника

Додавання

Множення за методом і додатковий зсув на один розряд після його завершення

Додавання

Зі старших розрядів множника

Додавання

Додатковий зсув на один розряд і після нього множення за методом

Додавання

Таблиця 3.8 - Перший приклад множення обернених кодів

Приклад 3.8. Помножити обернені коди чисел А = - 0,10100 і В = - 0, 10011, використовуючи метод 2.

Розвязання. Для даних чисел маємо: [А]моб=11,01011; [В]об= 1,01100. Оскільки B<0, то додаються поправки. Послідовність дій, що виконуються в процесі множення, подані у вигляді табл. 3.9.

Таблиця 3.9 - Другий приклад множення обернених кодів

Відповідь: С= 0, 0101111100.

3.2.4. Множення доповняльних кодів чисел

У випадках, коли числа в машині зберігаються в доповняльних кодах, доцільно всі операції над числами робити на суматорі доповняльного коду. Однак при цьому під час множення виникає ряд особливостей, які необхідно враховувати. Тому розглянемо правила множення операндів, що представлені в доповняльному коді.

Нехай множене А - будь-яке число, а множник B > 0, тобто А = [A]д і [В]д . Тоді

.

Згідно з теоремою про додавання доповняльних кодів можна стверджувати, що права частина цього співвідношення відповідає доповняльному коду результату. Таким чином, у випадку додатного множника добуток доповняльних кодів співмножників дорівнює доповняльному коду результату.

Розглянемо випадок, коли множене А - будь-яке число, а множник B < 0, тобто А=[A]д і [В]д . Виходячи з означення доповняльного коду . Отже,

.

Тоді

.

Звідси випливає, що коли множник є відємним числом, то доповняльний код добутку одержується додаванням поправки до добутку доповняльних кодів співмножників.

Таким чином, у загальному випадку, в процесі множення доповняльних кодів операндів одержуємо одночасно знакову і цифрову частини добутку.

Правила множення з додаванням поправки наведені в табл. 3.10.

Приклад 3.9. Помножити доповняльні коди чисел А = - 0, 10100 і В = 0, 10011, використовуючи метод 1.

Розвязання. Для даних чисел маємо: [А]мд =11,01100; [В]д= 0,10011. Оскільки B>0, то поправка не додається. Послідовність дій, що виконуються в процесі множення, подані у вигляді табл. 3.11.

Відповідь: [С]мд =11,1010000100; С= - 0, 0101111100.

Таблиця 3.10 - Правила множення з додаванням поправки

Методи множення

Етапи

З молодших розрядів множника

Множення за методом і додатковий зсув на один розряд після його завершення

Додавання

Зі старших розрядів множника

Додавання

Додатковий зсув на один розряд і після нього множення за методом

Таблиця 3.11 - Перший приклад множення доповняльних кодів

Приклад 3.10. Помножити доповняльні коди чисел А = - 0,10100 і В = - 0, 10011, використовуючи метод 2.

Розвязання. Для даних чисел маємо: [А]мд=11,01011; [В]д= 1,01100. Оскільки B<0, то додається поправка. Послідовність дій, що виконуються в процесі множення, подані у вигляді табл. 3.12.

Таблиця 3.12 - Другий приклад множення доповняльних кодів

Відповідь: С= 0, 0101111100.

3.3. МЕТОДИ ПРИСКОРЕННЯ ОПЕРАЦІЇ МНОЖЕННЯ

3.3.1. Основні поняття

Прискорення операції множення дозволяє істотно підвищити продуктивність ЦОМ, оскільки приблизно 70% свого часу вони витрачають на виконання цієї операції. Аналізуючи (3.2) - (3.5), можна намітити такі шляхи скорочення часу множення: зменшення часу додавання і зсуву кодів; зменшення кількості додавань і кількості зсувів кодів.

Оскільки прості методи множення передбачають виконання в кожному циклі зсув кодів тільки на один розряд, то зменшити час зсуву неможливо тому, що кола для зсуву реалізують, як правило, з найменшою затримкою сигналів.

Зменшення часу додавання двох кодів досягається за рахунок ускладнення кіл формування розрядних сум і перенесень у суматорі. Але це ні яким чином не впливає на організацію процесу множення. Тому основні підходи щодо прискорення операції множення базуються на зменшенні кількості додавань і кількості зсувів кодів.

Відомі на цей час методи прискорення множення розподілені на дві великі групи: логічні й апаратні.

Логічними методами прискорення множення називають такі методи, реалізація яких не вимагає змін основної структури арифметичних кіл пристрою для множення (див. рис. 3.1 - 3.5), а прискорення досягається тільки за рахунок ускладнення схеми керування цим пристроєм. Стосовно пристроїв для множення паралельних кодів ознакою того, що ми маємо справу з логічним методом прискорення множення, є незалежність кількості додаткової апаратури (у порівнянні з вихідною схемою) від кількості розрядів співмножників.

Апаратні методи, прискорення множення вимагають для свого здійснення введення додаткової апаратури в основні арифметичні кола пристрою для множення.

Розрізняють апаратні методи першого порядку і другого порядку. Для апаратних методів першого порядку характерна лінійна залежність кількості додаткової апаратури від кількості розрядів у співмножниках п. Тоді як реалізація методів другого порядку вимагає введення додаткової апаратури, кількість якої пропорційна .

3.3.2. Логічні методи прискорення операції множення в двійковій системі числення

До логічних методiв прискорення операції множення належать: метод множення з пропусканням додавань у тих випадках, коли чергова цифра множнику є нуль; метод множення з перетворенням цифр множнику шляхом групування розрядiв i метод множення з послідовним перетворенням цифр множника.

В основi двох останніх логічних методiв лежить перехід до надлишкової двійкової системи числення з алфавітом {1, 0, }, який дозволяє зменшити кількість одиниць у коді множника, але при цьому в процесi множення будуть виконуватись операції додавання та віднімання.

Метод множення з пропусканням додавань є найпростішим з логічних методів прискорення множення. Схему керування взагалі простіше побудувати так, щоб за тактом зсуву щораз приділявся час на додавання, але додавання виконувалося б у залежності від цифри множника. Невелике ускладнення схеми керування, що дозволяє відводити час на додавання тільки тоді, коли воно дійсно необхідно, скорочує число тактів додавання в середньому вдвічі. Час множення за таким методом прискорення дорівнює:

.

Цей метод прискорення рівною мірою підходить для тих випадків, коли множення починається зі старших розрядів множника, і для випадків, коли множення починається з молодших розрядів.

Приклад 3.11. Помножити числа А = - 0, 10100 і В = 0, 10011, використовуючи метод множення з пропусканням додавань.

Розвязання. Для даних чисел маємо: =1; = 0, 10100; =0; = 0, 10011. Визначаємо знак добутку: =10=1.

Усі дії, що виконуються в кожному циклі множення, наведені табл. 3.13.

Відповідь: С= - 0, 0101111100.

Таблиця 3.13 - Приклад множення за прискореним методом

Розглянемо тепер метод множення з перетворенням цифр множнику шляхом групування розрядiв.

Кількість циклів, що необхідні для реалізації операції множення, можна скоротити, якщо в кожному циклі аналізувати не один, а два або більше розрядів множнику, виконуючи після аналізу додавання або віднімання та зсув множнику на відповідну кількість розрядів (два або більше). Для організації прискореного множення множник розбивають на групи з двох розрядів і перетворюють його таким чином, щоб кожна група містила не більш одної значущої одиниці (додатної або відємної).

Правила перетворення множника з молодших розрядiв у разі групування по два розряди формулюються, враховуючи таке.

Комбінації 00, 01, 10 не перетворюються, а комбінація 11 замінюється комбінацією 1.0, яка містить відємну одиницю в даній групі розрядів і додатну одиницю, що передається до наступної групи розрядів множника.

З урахуванням одиниці, що передається з попередньої групи розрядів, у даній групі розрядів після перетворення може зустрітися одна з таких комбінацій:

00 - якщо дана група розрядів містить цифри 00 і з попередньої групи одиниця не передається або якщо дана група розрядів містить цифри 11 і одиниця передається з попередньої групи розрядів;

01 - якщо дана група містить цифри 01 і з попередньої групи одиниця не передається, або якщо дана група розрядів містить 00 і передається одиниця з попередньої групи розрядів;

10 - якщо дана група містить 10 і нема одиниці з попередньої групи або якщо дана група містить 01 і є одиниця з попередньої групи розрядів;

0 - якщо дана група розрядів містить 11 і нема одиниці з попередньої групи або якщо дана група містить 10 і є одиниця з попередньої групи.

Із сказаного випливають правила перетворенням множнику, починаючи з молодших груп розрядів, що наведені в табл. 3.14. Тут - цифри даної групи розрядів; - цифра, що передається з попередньої групи; - перетворені цифри даної групи; - цифра, що передається в наступну групу.

Таблиця 3.14 - Правила перетворенням множнику, починаючи з молодших груп розрядів

0 0

0

0 0

0

0 0

1

0 1

0

0 1

0

0 1

0

0 1

1

1 0

0

1 0

0

1 0

0

1 0

1

0

1

1 1

0

0

1

1 1

1

0 0

1

Застосовуючи ці правила необхідно враховувати, що старша значуща цифра перетвореного множника може знаходитися в розряді цілих, де неперетворений множник містить завжди нуль.

Приклад 3.12. Використовуючи групування розрядів, виконати перетворення множнику 001011111001100111, починаючи з молодших розрядів.

Розвязання. Діючи за правилами, що наведені в табл. 3.14, одержимо

0 0

1 0

1 1

1 1

1 0

0 1

1 0

0 1

1 1

+1

+1

+1

+0

+0

+0

+0

+1

0 1

0

0 0

0

1 0

0 1

1 0

1 0

0

Замість 11 одиниць у вихідному представленні множника одержуємо 8 додатних і відємних одиниць у перетвореному.

Відповідь: 010000100110100.

Коли одразу аналізуються два розряди перетвореного множнику, то в процесі множення виконуються такі дії.

Якщо група містить комбінацію 00, то це означає, що протягом двох найближчих циклів множення не потрібно буде виконувати ні додавань, ні віднімань; при наявності комбінації 01 потрібно буде виконати одне додавання в першому з двох найближчих циклів множення, а у разі комбінації 10 - у другому. Коли група містить комбінацію 0, то буде потрібно виконати одне віднімання в першому з двох найближчих циклів множення.

У разі одночасного аналізу двох розрядів, починаючи зі старших, у правилах перетворення груп розрядів (табл. 3.15) враховується значення сусіднього розряду, що розташований праворуч від групи, яка аналізується. При цьому аналіз розрядів множника завжди починається з пустої групи, що дописується ліворуч від найстаршого розряду.

Приклад 3.13. Використовуючи групування розрядів, виконати перетворення множнику 001011111001100111, починаючи зі старших розрядів.

Розвязання. Діючи за правилами, що наведені в табл. 3.15, одержимо

Замість 11 одиниць у вихідному представленні множника одержуємо 7 додатних і відємних одиниць у перетвореному.

Відповідь: 01000000100100.

Той чи інший метод перетворення тим ефективніше, чим менше в перетвореному множнику середня кількість додатних і відємних одиниць, тобто чим менше в середньому потрібно додавань і віднімань. Важлива також максимальна кількість додавань і віднімань, що можуть виконуватись під час множення.

Таблиця 3.15 - Правила перетворення множнику, починаючи зі старших груп розрядів

0 0

0

0 0

0 0

1

0 1

0 1

0

0 1

0 1

1

1 0

1 0

0

0

1 0

1

0

1 1

0

0

1 1

1

0 0

Для оцінки ефективності описаного вище методу групування розрядів відзначимо насамперед, що для будь-якої комбінації цифр протягом двох циклів множення може бути не більш одного додавання або віднімання. Таким чином, в гіршому випадку кількість додавань-віднімань дорівнює 0,5п.

Середня кількість додавань-віднімань дорівнює 0,375п. З урахуванням цього середній час множення складає:

- для першого і другого методів множення

;

- для третього і четвертого методів множення

.

Метод множення з послідовним перетворенням цифр множника передбачає послідовний аналіз цифр множника без розбиття на групи. При цьому використовується такі правила перетворення:

- якщо дана цифра неперетвореного множника не збігається із сусідньою праворуч цифрою, сусідня ліворуч цифра є 0 і попередня цифра перетвореного множника є 0, то даний розряд у перетвореному множнику є 1;

- якщо дана цифра неперетвореного множника не збігається із сусідньою праворуч цифрою, сусідня ліворуч цифра є 1 і попередня цифра перетвореного множника є 0, то даний розряд перетвореного множника повинний містити ;

- якщо дана цифра неперетвореного множника збігається із сусідньої праворуч цифрою або якщо попередня цифра перетвореного множника не є нулем, то даний розряд у перетвореному множнику є 0.

Застосовуючи ці правила необхідно враховувати, що старша значуща цифра перетвореного множника може знаходитися в розряді цілих; праворуч і ліворуч від значущих розрядів перетвореного множника завжди передбачаються нулі. Коли в приведеному правилі говориться про "попередні" цифри перетвореного множника, то стосовно до множення від молодших розрядів це відноситься до попередньої молодшої цифри перетвореного множника, а стосовно до множення від старших - до старшої попередньої цифри.

Описане послідовне перетворення розрядів множнику забезпечує під час множення в середньому 0,333п додавань-віднімань. Це найкращий результат, що може бути отриманий для логічних методів прискорення множення.

У здійсненні метод послідовних перетворень ненабагато складніше, ніж метод групування розрядів множника, ефективність же його вище.

При цьому виникають визначеної довжини послідовності чи нулів одиниць, що приводить до необхідності одночасного аналізу декількох розрядів множника і зрушенню на довільне число розрядів.

3.3.3. Апаратні методи прискорення операції множення в двійковій системі числення

Спочатку розглянемо апаратні методі прискорення операції множення першого порядку.

1. Метод множення з перетворенням цифр множнику групування розрядiв і використанням кратних множеного.

Практично використовують розбиття на групи з чотирьох розрядів, що рівносильне переходу до шестнадцаткової системи числення. При цьому розглядається чергова цифра (тетрада) множника і його попередня цифра (тетрада). В залежності від значень цифри множнику в попередньому розряді виконуються різні дії (табл.3.16). Для реалізації такого множення потрібно попередньо сформувати кратні множеного: А, 2А, 3А і 6А.

Аналіз чотирьох двійкових розрядів одночасно дає можливість одразу здійснити зсув на чотири розряди.

Таблиця 3.16 - Дії, що виконуються в залежності від цифр множника

Тетрада, що

аналізується

Значення попередньої цифри

Тетрада, що

аналізується

Значення попередньої цифри

?8

<8

?8

<8

0 0 0 0

+А

0

1 0 0 0

- (6А+А)

+(6А+2А)

0 0 0 1

+2А

+А

1 0 0 1

- 6А

- (6А+А)

0 0 1 0

+3А

+2А

1 0 1 0

- (3А+2А)

- 6А

0 0 1 1

+(2А+2А)

+3А

1 0 1 1

- (2А+2А)

- (3А+2А)

0 1 0 0

+(3А+2А)

+(2А+2А)

1 1 0 0

- 3А

- (2А+2А)

0 1 0 1

+6А

+(3А+2А)

1 1 0 1

- 2А

- 3А

0 1 1 0

+(6А+А)

+6А

1 1 1 0

- А

- 2А

0 1 1 1

+(6А+2А)

+(6А+А)

1 1 1 1

0

- А

2. Метод множення з аналізом довільної кількості розрядiв множнику. Ідея методу полягає у виявленні послідовностей нулів і одиниць з наступної груповою обробкою розрядів множнику. Якщо виявляється група вигляду , то виконується одразу зсув на k-1 розрядів і додавання множеного. Якщо аналізується група вигляду , то здійснюється зсув одразу на k-1 розрядів і віднімається множене. Коли аналізується група розрядів вигляду , то виконується її перетворення в нову групу вигляду . Код цієї групи показує, що спочатку виконується віднімання множеного, а потім зсув одразу на k-1 розрядів.

Такий метод прискорення операції множення вимагає створення пристрою для зсуву кодів на довільну кількість розрядів.

3. Метод множення з розбиттям множника на частини передбачає одночасне виконання множення числа А на окремі частини числа В з наступним додаванням отриманих результатів.

Множник В можна розбити на будь-яку кількість частин, але найефективнішим, з точки зору комплексної оцінки апаратних і часових витрат, є розбиття на дві частини. Для цього випадку обчислення описуються такою формулою:

.

Якщо множення на частини виконується за першим і другим методами, то час множення дорівнює:

.

4. Метод множення з використанням таблиць квадратів чисел базується на тотожності:

.

За значеннями суми і різниці співмножників з таблиці квадратів чисел зчитуються числа і , а потім остаточний добуток формується шляхом виконання операції віднімання .

Різновид цього методу множення описується тотожністю

.

Практично даний метод і його різновид дозволяють прискорити виконання операції множення чисел тільки невеликої розрядності (8 або 16 розрядів), тому що зі збільшенням розрядності чисел складність таблиці значно зростає.

4. Метод множення з запамятовуванням проміжних перенесень.

Час множення можна скоротити шляхом зменшення тривалості кожного додавання за рахунок виключення з нього часу, що витрачається на розповсюдження перенесень. Суть цього методу прискорення полягає в тому, що весь процес одержання добутку виконується додаванням без розповсюдження перенесень з одночасним їх запамятовуванням і однократним розповсюдженням перенесень на заключному етапі множення. При цьому в кожному циклі множення додаються порозрядно три числа: черговий частковий добуток, проміжна сума часткових добутків і проміжні перенесення, що утворені в попередньому циклі множення. При цьому перенесення, що отримані в попередньому циклі, повинні запамятовуватися до початку наступного циклу.

Приклад 3.14. Помножити числа А = 0, 10110 і В = 0, 11011, використовуючи метод множення з запамятовуванням проміжних перенесень.

Розвязання. Для даних чисел маємо: =0; = 0, 10110; =0; = 0, 11011. Визначаємо знак добутку: =00=0.

Дії, що виконуються в процесі множення, наведені в табл. 3.17. Тут S - проміжна сума часткових добутків, P - проміжні перенесення.

Таблиця 3. 17 - Приклад множення з запамятовуванням перенесень

Для остаточних кодів S і P виконується додавання з розповсюдженням перенесення:

Відповідь: С= 0,1001010010.

До апаратних методів прискорення операції множення другого порядку відносяться матричні методи множення.

Коли множене і множник розташовані в регістрах машини, можна утворити відразу всі часткові добутки і здійснити їх одночасне додавання, використовуючи певну кількість суматорів. Узагальнена структура пристрою, що реалізує таке множення (рис. 3.6), містить: регістри РгА і РгВ, в яких зберігаються множене і множник, відповідно; блок елементів І, що забезпечує формування всіх часткових добутків; блок суматорів, у якому здійснюється одночасне додавання всіх часткових добутків.

Матричні методи множення відрізняються саме організацією одночасного додавання.

Рис. 3.6. Узагальнена структура пристрою, що реалізує матричний метод множення

Існує ряд методів множення, що засновані на додаванні груп часткових добутків з наступним обєднанням сум разом з перенесеннями для одержання добутку. Наприклад, часткові добутки групуються по три і додаються із запамятовуванням перенесень за допомогою ланцюжка суматорів На кінці ланцюжка здійснюється додавання з розповсюдженням перенесень. Така роздільна обробка проміжних сум і перенесень вимагає так називаного "дерева суматорів" (рис. 3.7).

Реалізація матричних методів виконання операції множення вимагає більшої кількості апаратури, ніж методів послідовного аналізу розрядів або груп розрядів множника, і дає більший виграш у часі. Однак у звязку зі значним розвитком мікроелектроніки обмеження щодо кількості апаратури стають усе менш суворими, тому матричні методи широко застосовують на практиці.

Рис. 3.7. Дерево суматорів

3.4. МНОЖЕННЯ ЧИСЕЛ З ПЛАВАЮЧОЮ КОМОЮ

Для чисел і , що представлені в формі з плаваючою комою, добуток обчислюється за формулою:

,

де , .

Звід ...........



Страницы: [1] | 2 |








 
 
Показывать только:


Портфель:
Выбранных работ  

Рубрики по алфавиту:
А Б В Г Д Е Ж З
И Й К Л М Н О П
Р С Т У Ф Х Ц Ч
Ш Щ Ъ Ы Ь Э Ю Я

 

 

Ключевые слова страницы: Виконання операцій множення і ділення у двійковій системі числення | учебное пособие

СтудентБанк.ру © 2013 - Банк рефератов, база студенческих работ, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам, а также отчеты по практике и многое другое - бесплатно.
Лучшие лицензионные казино с выводом денег