Реферат на тему:
Внутреннее строение Земли
Создание модели внутреннего строения Земли - одно из самых больших достижений науки XX столетия. Конечно, создавались модели и раньше. Но они основывались на догадках и на сравнительно небольшом количестве достоверных фактов. Больше было предположений. Нельзя сказать, чтобы сегодня все в строении Земли было бы ученым ясно и понятно. Недра таят огромный запас загадок. Но в принципе, я думаю, можно сказать, что современная модель уже вряд ли когда-нибудь существенно изменится так, как менялись модели прошлых, например, веков.
Но как же удалось построить ее ученым? Может быть, люди прорыли шахту до центра земли и исследовали каждый метр глубины? Такую работу не то что проделать - представить себе невозможно. Нам бы еще многие годы пришлось гадать о строении недр, если бы к середине прошлого столетия не наметился новый подход к проблеме.
Ученые стали рассматривать Землю как физическое тело в целом. Стали изучать физические процессы, которые происходят в твердой, жидкой и газообразной оболочках Земли. Заинтересовались тем, как реагирует наша планета на притяжение Луны с Солнцем, как воздействует на Землю межпланетная среда.
Специалисты вплотную занялись изучением химического состава земной коры.
Окончательно сформировалась наука геофизика, отдельные разделы которой были заложены еще в прошлые столетия.
Что же вошло в состав геофизики - комплекса физических наук, изучающих нашу планету? Прежде всего - гравиметрия, наука о поле силы тяжести Земли, о том, как это поле изменяется. Именно методы гравиметрии позволили нашим ученым изучить и построить сложную фигуру геоида, выяснить строение тех глубинных слоев, куда уже не добраться с помощью шахт и скважин, а также изучить упругие деформации - изменения размеров и формы Земли под воздействием притяжения Луны и Солнца.
Методы гравиметрии сегодня широко применяются для поиска полезных ископаемых, главным образом нефти, газа, угля и некоторых рудных тел, плотность которых отличается от плотности прилегающих пород.
Следующий раздел новой науки сейсмология - наука о землетрясениях. Она изучает причины и условия возникновения этих страшных бедствий, а также то, как распространяются волны упругих колебаний в земной толще. Наблюдая распространение этих волн, ученые составили сейсмическую модель внутреннего строения Земли, которой мы пользуемся в настоящее время.
Методы сейсмологии, основанные на создании искусственных микроземлетрясений, которые вызывают геологи мирными взрывами, находят тоже применение для поисков полезных ископаемых, а также в инженерно-геологических изысканиях, когда намечают трассы дорог, строят водохранилища и плотины.
Третий раздел самый молодой. Пожалуй, лишь в наше время, уже в самые последние годы, он принял часть исследовательского груза на свою спину. Я имею в виду учение о земном магнетизме. Заложенное еще в начале XVII века, оно недавно вошло равноправным партнером в группу наук, занятых изучением глобальных вопросов строения и эволюции Земли.
Сегодня к физике Земли относят еще электрометрию, которая изучает естественное и искусственные электрические поля в Земле; радиометрию - исследующую излучения, испускаемые естественными радиоактивными элементами, содержащимися в горных породах, изучающую тепловую историю нашей планеты и современное тепловое состояние ее недр. Есть и другие отрасли знаний, обслуживающие современную науку о Земле.
Тот, кто выберет себе в дальнейшем специальность, связанную с изучением нашей планеты, познакомится еще со множеством разделов науки о Земле. Потому что ничто не представляет для нас такого интереса, как история и жизнь планеты, на которой мы с вами живем.
Пожалуй, изучение внутреннего строения Земли лучше всего определяется именно известной сказочной формулой, вынесенной в заголовок. Ну в самом деле: ни того, что там находится, ни того, в каком порядке это неизвестное распределяется по недрам, люди не знают. Так на что же надеются?
Правда, у нас уже есть примеры того, как, не объезжая Землю кругом, мудрый Эратосфен измерил планету. А европейские ученые сумели определить плотность Земли или, иными словами, «взвесили» планету без весов. Теперь осталось доказать, что плотность распределяется именно так, как предполагалось, то есть что в центре Земли имеется тяжелое плотное ядро.
Конечно, легко сказать, что плотность вещества Земли должна увеличиваться с глубиной, приводить разные цифры, уверяя, что они получились в результате «теоретических расчетов», утверждать, что в центре Земли есть плотное ядро... А вот как это все проверить, если никто до центра планеты не добирался да вряд ли и доберется в обозримое время? Может быть, Земля вся насквозь состоит из вещества одинаковой плотности и никакого ядра в ней нет?
Есть у хитроумных физиков один способ, позволяющий узнать распределение тяжелых масс в теле по тому, как оно движется. Изобрести этот способ было непросто. Начало ему положил немецкий математик и астроном Фридрих Бессель. В 1844 году он заметил, что в равномерном движении звезды Сириус наблюдаются странные отклонения. Будто кто-то невидимый кружится вокруг звезды и сбивает ее своим притяжением с пути то в одну сторону, то в другую. Примерно так же веселый щенок на поводке, бегая вокруг своего хозяина, не дает тому выдерживать строго определенное направление. Такой же характер движения наблюдался и у некоторых других звезд. «А не летают ли рядом с ними тяжелые, но невидимые спутники?» - подумал математик. Но доказать ничего не смог.
Прошло восемнадцать лет. Астрономы построили новые телескопы. И однажды увидели рядом с ярким Сириусом крохотную звездочку, еле заметную в ослепительных лучах главной звезды. Прав был Бессель - значит, система из звезды со спутником движется в пространстве немножко по другим законам, чем звезда без спутника. Даже если эта последняя и имеет ту же массу.
А вот еще пример. Если вы летали в самолетах, то, наверное, замечали: когда пассажиров немного, стюардессы рассаживают их так, чтобы они не сбивались в кучу, а распределялись, уравновешивая багаж и топливо. И это правильно. Потому что иначе самолет может потерять равновесие при взлете и упасть. Здесь тоже движение зависит от распределения масс, но уже внутри одного тела - самолета.
Теперь представьте себе, что у вас есть два шара. Размеры их одни и те же. Массы, средние плотности - все точь-в-точь одинаково. Но вы знаете, что первый шар отлит сплошным из одного металла, а у другого тяжелое ядро окружено более легкой оболочкой. Снаружи они ничем не отличаются. Как же все-таки выяснить, не вскрывая, у какого из них есть ядро.
Вот тут-то на помощь и приходит физика. Оказывается, если положить оба шара на наклонную доску и скатывать их, как на гонках, то один будет всегда чуть-чуть отставать от другого. Это и есть сплошной шар. Его момент инерции больше, чем у шара с тяжелым ядром и легкой оболочкой.
Момент инерции как раз и есть та характеристика, которая зависит от распределения масс в системе тел или в одном теле. Зная его, можно судить о том, как устроено тело, не забираясь в его середину.
Наша Земля тоже не одиночка. Рядом с нею летает Луна. И ученые умеют определять моменты инерции подобных систем.
Интересно отметить, что после всех расчетов момент инерции нашей планеты оказался на семнадцать процентов меньше, чем он должен быть у сплошного шара массой и размерами равного Земле. Значит, у нашей планеты обязательно должно быть тяжелое ядро.
Ну как не восхититься находчивостью человеческого ума, который нашел решение такой, казалось бы, неразрешимой задачи?!
Как устроена кора Земли
Самый верхний слой твердой земли ученые назвали корой. Состав коры сложный. Больше всего в ней оказалось кислорода, кремния и алюминия. Потом шли остальные элементы, но их значительно меньше. Конечно, газ кислород содержится в коре не в чистом виде. Он входит в состав окислов. Ведь даже обыкновенный песок - это окисел кремния со всякими добавками. А простая глина - такой же окисел алюминия, но тоже со множеством добавок. Раньше легкоплавкие породы земной коры называли «сиаль». «Си» от слова силициум - кремний, по-латински, «аль» - от алюминия. Сейчас этот термин устарел.
Состав и строение земли всегда интересовали человечество. Да и неудивительно - ведь именно кора, ее верхний слой обеспечивает человека всем необходимым для жизни. К сожалению, прошли те времена, когда каменный уголь и руду люди добывали прямо с поверхности, стоило лишь разворошить чуть-чуть пахотную землю или мох или другую какую-нибудь почву. Прошло время, когда нефть тугими фонтанами била из скважин, пробуренных на несколько десятков метров. Сейчас, чтобы найти полезные ископаемые, приходится тщательно изучать строение земной коры и забираться в нее все глубже и глубже.
Представьте себя на минутку геологом. Ваша задача - поиск месторождения редкометаллических руд, например вольфрамовых и молибденовых. Оба металла - важнейшие и незаменимые добавки для высокосортных сталей: вольфрам входит в состав высокопрочных сплавов, а молибден - жаропрочных. Как же ищут руды, содержащие эти столь необходимые современной промышленности металлы?
Вольфрам - металл тяжелый. Может быть, и руды его более плотные, чем окружающие породы? Если так, то можно применить гравитационную разведку. Найти место, где сила тяжести чуть больше, там и рыть. Но вот беда: оба металла - и вольфрам и молибден - содержатся в горных породах в таких небольших количествах, что практически ничем не изменяют их свойств. Нет, гравитационная разведка не годится. Может быть, попробовать магниторазведку? Но горные породы, содержащие вольфрамовые и молибденовые руды, почти не магнитны. И по электрическим свойствам они слишком мало отличаются от окружающих горных пород. Как же их искать?
Правда, по имеющемуся опыту, мы знаем, что вольфрамовые и молибденовые месторождения часто бывают рядом с гранитными массивами. Как же они там оказываются? Попробуем представить себе этот процесс.
Глубоко под земной корой находятся очаги раскаленной магмы. Могучие силы земного давления сдавливают ее. Бьется горячее земное «варево», ищет, куда бы прорваться. Самый легкий путь - наверх, там давление поменьше. Найдет магма трещинку и, как паста из тюбика, выдавливается, выдавливается. Раздвигает породы, уплотняет их, прогревает. Окружает себя как скорлупой. В такой скорлупе магма остывает. А раз остывает - объем ее уменьшается. И вся масса ее как бы проседает. Между гранитом, в который превратилась остывшая магма, и прочным сводом-скорлупой образуется пористая, трещиноватая область. В нее начинает пробираться вода. Горячие геотермальные растворы приносят сюда соединения самых разных металлов, часть из них выпадает в осадки. Год за годом, тысячелетие за тысячелетием длится этот процесс. И образуется в пористой области месторождение редких металлов.
Значит, чтобы разведать вольфрам с молибденом, нужно сначала изучить горный район и отыскать гранитные массивы. Затем изучить состав найденных гранитов, поскольку редкие металлы встречаются далеко не во всех. Надо бить шурфы, бурить разведочные скважины. В общем, хлопот предостаточно. Нелегка работа геологоразведчиков.
Больше всего сведений о строении земной коры дал все же сейсмический метод. Я уже рассказывал о том, как под действием землетрясений или мощных взрывов частицы земли сдвигаются, передают свое движение дальше и возникают сейсмические волны. Они, как рентгеновские лучи, «просвечивают» Землю, выявляя ее внутреннее строение.
В 1909 году сербский ученый Андрей Мохоровичич, изучая землетрясение в Загребе, обнаружил слой, отделяющий земную кору от мантии.
Затем четырнадцать лет спустя австрийский ученый В. Конрад выделил внутри земной коры еще одну границу. Выше нее скорость распространения сейсмических волн равнялась скорости таких колебаний в граните, а ниже - в базальтах. Этот слой или поверхность назвали «поверхностью Конрада». И ученые договорились считать, что под осадочным, сравнительно рыхлым, слоем на глубине 20-25 километров лежат сначала граниты, а за ними, еще глубже, - базальты.
На самом-то деле, конечно, в «гранитном слое» находятся вовсе не знакомые нам всем граниты, а множество самых разных пород, спрессованных до плотности гранита. Точно так же, как и «базальтовый слой» тоже не состоит из одного лишь базальта.
Таким трехслойным «пирогом» представляется сегодня материковая или континентальная кора. И совсем иначе оказалась устроена земная кора, выстилающая океаническое дно. Осадков значительно меньше, чем на суше. И куда-то пропал гранитный слой. Почему? Об этом до сих пор идут горячие споры среди ученых.
Из чего состоит мантия
Точно этого не знает никто! Добыть кусочек вещества из глубоких недр - нет более заветной мечты у геологов. Сколько бы нерешенных задач сразу получило решение. Но... до этого пока далеко. Пока лишь по косвенным признакам можно обсуждать возможный состав и строение вещества мантии.
Долгое время основным материалом мантии считался оливин - хорошо знакомый многим желтовато-зеленый, оливковый, а то и коричневый минерал, входящий в состав почти всех самых тяжелых горных пород земли, когда-либо изливавшихся из недр земных расплавленной магмой.
Из оливина же в основном состоят и каменные метеориты, прилетающие к нам на Землю из космического пространства. Некоторые ученые считают, что это остатки строительного материала, из которого образовались планеты, в том числе и наша Земля.
В 1936 году известный английский физик и видный общественный деятель Джон Берналл предположил, что в глубине земных недр в условиях высоких температур и давлений кристаллики оливина сдавливаются, атомы переупаковываются и должны получаться кристаллы другой, большей плотности. Аналогичную идею высказал в то же время и профессор Ленинградского горного института Владимир (Вартан) Никитович Лодочников. Он считал, что все физические свойства материи, находящейся в глубине Земли, должны изменяться.
Ученые стали испытывать оливин в лабораториях. Кубики желто-зеленого минерала сдавливали и нагревали, снова нагревали и опять сдавливали. Очень подходил оливин под давлением по сейсмическим характеристикам к веществу мантии, но... При давлениях, соответствовавших глубине примерно четыреста километров, он разрушался. Значит, из него могла состоять только верхняя и частично средняя мантия. А что же входит в состав нижней?
Русский геофизик В.А. Магницкий и американский ученый Ф. Берч выдвинули гипотезу о том, что под действием гигантских давлений и температур сложные силикатные соединения (в том числе и оливин) распадаются на простые окислы кремния, магния, железа, но в более плотной упаковке.
В это было трудно поверить. Ведь кристаллическая решетка минералов - первооснова материи. Неужели простым давлением и повышением температуры можно ее изменить?..
В 1958 году австралийский ученый А. Рингвуд вместе со своими коллегами заключил образцы оливина в могучий пресс и, нагрев их до температуры примерно в тысячу градусов, сдавил до ста тысяч бар. Результат оказался удивительнейшим. Если рассмотреть кристаллик обычного оливина под электронным микроскопом, а потом построить модель упаковки его ионов кислорода, то получится ровная шестигранная призмочка. Примерно такая нарисована на рисунке. Но после опытов Рингвуда материал полностью перестраивался. Длинная призмочка с ионами кислорода в узлах превращалась в плотный приземистый кубик, соответствовавший кристаллической структуре твердой шпинели. Значит, прав был Берналл, говоря о возможности таких превращений, правы были Лодочников, Магницкий и Берч.
На одном из международных симпозиумов по геофизике, состоявшемся в 1963 году, советские специалисты показали зарубежным коллегам небольшие темные кристаллики непонятного вещества. Никто из геологов не мог определить, что это такое. Вроде бы кварц, а вместе с тем и не кварц. Очень уж плотен и тяжел. Оказалось, все-таки кварц, только побывавший в условиях сильного сжатия и высокой температуры. Его получили советские ученые С.М. Стишов и С.В. Попова в лаборатории Института физики высоких давлений. По имени одного из своих творцов новый минерал получил и название - стишовит.
Интересной оказалась находка стишовита в естественных условиях.
Американцы отыскали его в кратере Аризоны, где он образовался в момент мощного удара прилетевшего метеорита о Землю.
Получалось, что вещества, из которых сложены верхние слои мантии, могут составлять и нижние ее этажи. Но при этом кристаллы под действием высоких давлений и температур переходят из одного вида в другие.
Такие превращения, когда вещество из одного состояния переходит в другое, например вода переходит из пара в жидкость, а из жидкости в лед, называются фазовыми превращениями или фазовыми переходами. Эти переходы, по-видимому, играют очень большую роль и значение в процессах, происходящих в глубоких недрах. Они помогают сегодня ученым представить себе не только состав нижней мантии, но и ядра Земли.
Земля - современная модель
Что же лежит в основе современных представлений о внутреннем строении Земли? Как ни странно, но эти основы можно разделить по стародавнему обычаю на три группы - три «кита». Прежде всего представление о составе нашей планеты дает лава, вылившаяся из недр через жерла вулканов и трещины. В большинстве случаев она имеет базальтовый состав. И геологи так ее и называют - базальтовая лава. Кроме того, мы доподлинно знаем о существовании больших гранитных массивов в докембрийских толщах коры.
Второй «кит» тоже «вещественный». Это прилетающие к нам из космоса метеориты. Ведь по идее они должны быть из того же первичного вещества, из которого слепился и весь земной шар. Подавляющее большинство космических гостей состоит из плотной горной породы - темно-зеленого перидотита и из железа.
Наконец, третий «кит» - скачкообразное изменение скоростей распространения сейсмических волн внутри Земли. Оно позволяет предположить, что так же скачкообразно меняется и плотность вещества внутри нашей планеты, нарастая с глубиной.
Все это заставляет нас предположить, что внутреннее строение Земли очень сложно. А чтобы изучать сложные объекты, в науке уже давно пользуются приближенными моделями. То есть более или менее простыми и наглядными картинами, которые примерно соответствуют имеющимся знаниям.
В геофизике под моделью Земли понимают как бы разрез нашей планеты. На нем должно быть ясно видно, как меняются такие важные свойства земных недр, как плотность, давление, скорость распространения сейсмических волн, температура, ускорение силы тяжести, электропроводность и так далее.
Считается, что первые шаги в построении реальной модели внутреннего строения нашей планеты, с учетом всей имеющейся геофизической информации, накопленной за много лет, сделали американские геофизики Адамс и Вильямсон в 1923 году. Однако сейсмологи в те годы еще не могли дать достаточно точных значений для скоростей упругих колебаний. И потому работа американцев страдала многими неточностями.
Исправить недостатки и уточнить скорости взялись два крупнейших геофизика тридцатых годов. С одним из них мы уже встречались, когда разговор шел о гипотезах происхождения Земли. Это Гарольд Джефрис, профессор Кембриджского университета в Англии. Другой - Бено Гутенберг, немецкий ученый, эмигрировавший из фашистской Германии за океан.
Целых десять лет продолжалась их работа. Результаты, достигнутые Джефрисом и Гутенбергом, позволили австралийскому геофизику Буллену, стажировавшемуся у Джефриса, построить новую модель Земли, в которой он ввел удобное разделение на зоны.
И все-таки к началу пятидесятых годов классический период в геофизике, опиравшийся в основном на методы механики, закончился. В Советском Союзе и в США появились работы В.А. Магницкого и Ф. Берча, применивших для геофизических целей современные методы физики твердого тела и физики высоких давлений. Я уже рассказывал немного об их опытах и выводах. В результате была построена современная модель оболочки Земли, которая включает в себя литосферу и верхние слои мантии.
Вы можете ее увидеть на рисунке-графике с пояснительными надписями. Постарайтесь призвать на помощь свое воображение, чтобы за скромной линией графика увидеть сложность строения и буйство стихий внутри планеты. Конечно, я понимаю, что график не столь нагляден и не так красив, как гравюры прошлых веков. Но у него есть одно неоспоримое преимущество перед последними: он намного правдоподобнее. На приведенном рисунке вы видите сейсмическую модель Земли, то есть отображающую изменения плотности вещества недр. Но такие же модели можно построить и для других свойств планеты.
А теперь несколько слов объяснения. Прежде всего под жесткой корой - литосферой, плиты которой мы сравнивали с громадными льдинами-айсбергами, плавающими на «океане подкорового вещества», примерно с семидесятикилометровой глубины начинается новый, неизвестный слой. В нем скорость распространения сейсмических волн резко падает. Это - астеносфера. Кое-где местами в ней располагаются первичные магматические очаги вулканов. Там плавится и кипит базальтовая магма, которая потом по трещинам и вулканическим каналам поднимается на поверхность. Температура этих очагов очень близка к температуре плавления глубинного вещества мантии. И потому они увеличивают вязкость всего подкорового вещества.
Конечно, астеносферу можно назвать текучей лишь в сравнении с каменными монолитами. Невероятно медленно движется нечто, что составляет подкоровый слой, перетекая с места на место.
Вы, наверное, знакомы с варом - черной густой смолой, которая применяется в строительном деле. Вар легко колется на куски. Значит, он твердый. Но оставьте его на долгое время в покое - и кусок растечется лужей, которая будет так же колоться. Вещество астеносферы еще более вязкое, чем вар, но и оно способно перетекать из одного места в другое. Только очень медленно.
Примерно с двухсотпятидесятого километра глубины скорость распространения сейсмических волн снова начинает расти. Здесь уже давление в недрах так велико, что температура плавления сдавленного вещества повышается. Вещество мантии постепенно уплотняется, и скорости упругих колебаний в нем растут. Но растут медленно, будто накапливают силы. Потом вдруг резкий скачок! Ученые полагают, что здесь начинается зона фазовых переходов, о которых я вам тоже рассказывал. Здесь оливин превращается в более твердую шпинель.
И снова с глубиной идет плавное нарастание скоростей до зоны нового скачка - второй зоны фазовых переходов. Может быть, там происходит распад силикатов на окислы. Мы уже упоминали о стишовите, можно представить себе также уплотненные окислы и других элементов - железа, алюминия. А может быть, и наоборот, основные породообразующие минералы оболочки Земли переходят в более сложные структуры. Пока об этом ученые спорят. Но дальше, начиная с глубин в семьсот километров, скорости распространения сейсмических волн снова плавно нарастают под влиянием все увеличивающегося давления вышележащих слоев. И так происходит до самой границы с ядром Земли.
Ядро - это совсем особый вопрос и совершенно специфическая область земных недр.
О ядре и о наших современных представлениях о нем я хотел бы вам рассказать отдельно.
Из чего состоит ядро Земли
Идей о строении ядра Земли было высказано бесчисленное множество. Дмитрий Иванович Соколов - русский геолог и академик - говорил, что вещества внутри Земли распределяются, словно шлак и металл в плавильной печи.
Это образное сравнение не раз получало подтверждение. Ученые внимательно изучали прилетавшие из космоса железные метеориты, считая их осколками ядра распавшейся планеты. Значит, и у Земли ядро должно состоять из тяжелого железа, находящегося в расплавленном состоянии.
В 1922 году норвежский геохимик Виктор Мориц Гольдшмидт выдвинул идею общего расслоения вещества Земли еще в ту пору, когда вся планета находилась в жидком состоянии. Он это вывел по аналогии с металлургическим процессом, изученным на сталелитейных заводах. «В стадии жидкого расплава, - говорил он, - вещество Земли разделилось на три несмешивающихся жидкости - силикатную, сульфидную и металлическую. При дальнейшем остывании эти жидкости образовали главные оболочки Земли - кору, мантию и железное ядро!»
Однако ближе к нашему времени идея «горячего» происхождения нашей планеты все больше уступала «холодному» творению. И в 1939 году Лодочников предложил другую картину формирования недр Земли. К этому времени уже была известна идея фазовых переходов вещества. Лодочников предположил, что фазовые изменения вещества с увеличением глубины усиливаются, в результате чего вещество разделяется на оболочки. При этом ядро вовсе не обязательно должно быть железным. Оно может состоять из переуплотненных силикатных пород, находящихся в «металлическом» состоянии. Эта идея была подхвачена и развита в 1948 году финским ученым В. Рамзеем. Получалось, что хоть ядро Земли и имеет иное физическое состояние, чем мантия, но причин считать его состоящим именно из железа нет никаких. Ведь переуплотненный оливин мог быть столь же тяжелым, как и металл...
Так появились две исключающие друг друга гипотезы о составе ядра. Одна - развитая на основе идей Э. Вихерта о железо-никелевом сплаве с небольшими добавками легких элементов в качестве материала ядра Земли. И вторая - предложенная В.Н. Лодочниковым и развитая В. Рамзеем, гласящая о том, что состав ядра не отличается от состава мантии, но вещество в нем находится в особо плотном металлизированном состоянии.
Чтобы решить, в чью сторону должна склониться чаша весов, ученые многих стран ставили в лабораториях опыты и считали, считали, сравнивая результаты своих расчетов с тем, что показывали сейсмические исследования и лабораторные эксперименты.
В шестидесятых годах специалисты окончательно пришли к выводу: гипотеза металлизации силикатов, при давлениях и температурах, господствующих в ядре, не подтверждается! Более того, проделанные исследования убедительно доказывали, что в центре нашей планеты должно содержаться не меньше восьмидесяти процентов всего запаса железа... Значит, все-таки ядро Земли - железное? Железное, да не совсем. Чистый металл или чистый металлический сплав, сжатые в центре планеты, были бы слишком тяжелы для Земли. Следовательно, нужно предположить, что вещество внешнего ядра состоит из соединений железа с более легкими элементами - с кислородом, алюминием, кремнием или серой, которые больше всего распространены в земной коре. Но с какими из них конкретно? Это неизвестно.
И вот русский ученый Олег Георгиевич Сорохтин предпринял новое исследование. Попробуем проследить в упрощенном виде ход его рассуждений. Основываясь на последних достижениях геологической науки, советский ученый делает вывод, что в первый период образования Земля была скорее всего более или менее однородной. Все ее вещество примерно одинаково распределялось по всему объему.
Однако со временем более тяжелые элементы, например железо, стали опускаться, так сказать, «тонуть» в мантии, уходя все глубже к центру планеты. Если это так, то, сравнивая молодые и старые горные породы, можно в молодых ожидать меньшее содержание тяжелых элементов, того же железа, широко распространенного в веществе Земли.
Изучение древних лав подтвердило высказанное предположение. Однако чисто железным ядро Земли быть не может. Для этого оно слишком легкое.
Что же явилось спутником железа на его пути к центру? Ученый перепробовал множество элементов. Но одни плохо растворялись в расплаве, другие оказывались несовместимы. И тогда у Сорохтина возникла мысль: не был ли спутником железа самый распространенный элемент - кислород?
Правда, расчеты показывали, что соединение железа с кислородом - окись железа - вроде бы легковата для ядра. Но ведь в условиях сжатия и нагрева в недрах окись железа тоже должна претерпеть фазовые изменения. В условиях, существующих вблизи центра Земли, лишь два атома железа способны удержать один атом кислорода. Значит, плотность полученной окиси станет больше...
И снова расчеты, расчеты. Но зато каково удовлетворение, когда полученный результат показал, что плотность и масса земного ядра, построенного из окиси железа, претерпевшей фазовые изменения, дает точно ту величину, которую требует современная модель ядра!
Вот она - современная и, пожалуй, самая правдоподобная за всю историю ее поисков модель нашей планеты. «Внешнее ядро Земли состоит из окиси одновалентной фазы железа Fe2О, а внутреннее ядро - из металлического железа или сплава железа с никелем, - пишет в своей книге Олег Георгиевич Сорохтин. - Переходный слой F между внутренним и внешним ядром можно считать состоящим из сернистого железа - троиллита FeS».
В создании современной гипотезы о выделении ядра из первичного вещества Земли принимают участие многие выдающиеся геологи и геофизики, океанологи и сейсмологи - представители буквально всех отраслей науки, изучающей планету. Процессы тектонического развития Земли, по мнению ученых, будут продолжаться в недрах еще довольно долго, по крайней мере впереди у нашей планеты есть еще пара миллиардов лет. Лишь после этого необозримого срока Земля остынет и превратится в мертвое космическое тело. Но что к этому времени будет?..
Сколько лет насчитывает человечество? Миллион, два, ну, два с половиной. И за этот срок люди не только поднялись с четверенек, приручили огонь и поняли, как извлекать энергию из атома, они послали человека в космос, автоматы на другие планеты Солнечной системы и освоили ближний космос для технических нужд.
Исследование, а затем и использование глубоких недр собственной планеты - программа, которая уже стучится в дверь научного прогресса.
Литература
1. Аки К., Ричардс П. Количественная сейсмология. - М, 1983.
2. Буллен К. Введение в теоретическую сейсмологию. - М., 1966.
3. Джеффрис Г. Земля, ее происхождение, история и строение. - М., 1999.
4. Жарков В.Н. Внутреннее строение Земли и планет. - М.,1983.
5. Магницкий В.А. Внутреннее строение и физика Земли. - М., 2002.
6. Пузырев Н.Н. Методы и объекты сейсмических исследований. - Новосибирск, 1997.
7. Саваренский Е.Ф. Сейсмические волны. - М., 2003.
|