РЕФЕРАТ
Отчет о НИРС: 53 c., 28 рис., 5 источников
Объект исследования - архитектура современных микропроцессоров и вычислительных систем.
Цель работы - исследовать архитектуру современных микропроцессоров и вычислительных систем, а также сделать вывод о перспективах их развития.
В данной работе рассмотрено множество различных классификаций архитектур вычислительных систем по различным признакам, оценено нынешнее состояние исследований в области архитектуры процессоров, а также дан прогноз этих исследований и достижений на ближайшее время.
Основное внимание уделено вопросам классификации архитектур вычислительных систем, признакам, по которым эта классификация осуществляется, раскрытию понятий «микроархитектурный уровень» и «мультитредовые системы».
В качестве примера рассматриваются вычислительные системы таких производителей, как IBM, AMD, Sun Microsystems, CRAY и других.
СОДЕРЖАНИЕ
Введение
1 Классификации архитектур вычислительных систем
1.1 Классификация Флинна
1.2 Дополнения Ванга и Бриггса к классификации Флинна
1.3 Классификация Фенга
1.4 Классификация Шора
1.5 Классификация Хендлера
1.6 Классификация Хокни
1.7 Классификация Шнайдера
1.8 Классификация Джонсона
1.9 Классификация Базу
1.10 Классификация Кришнамарфи
1.11 Классификация Скилликорна
1.12 Классификация Дазгупты
1.13 Классификация Дункана
2 Организация компьютерных систем
2.1 Общие сведения
2.2 Устройство центрального процессора
2.3 Выполнение команд
2.4 RISCи CISC
2.5 Принципы разработки современных компьютеров
2.6 Параллелизм на уровне команд
2.7 Параллелизм на уровне процессоров
3 Эволюция микропроцессорных систем
3.1 Основные направления развития
3.2 Увеличение объема внутрикристальной памяти
3.3 Увеличение числа и состава функциональных устройств
3.4 Интеграция функций
3.5 Однокристальные мультискалярные и мультитредовые системы
3.6 Направление эволюции архитектуры микропроцессоров
Выводы
Список использованных источников
ВВЕДЕНИЕ
Стремительное развитие науки и проникновение человеческой мысли во все новые области вместе с решением поставленных прежде проблем постоянно порождает поток вопросов и ставит новые, как правило более сложные, задачи. Во времена первых компьютеров казалось, что увеличение их быстродействия в 100 раз позволит решить большинство проблем, однако гигафлопная производительность современных суперЭВМ сегодня является явно недостаточной для многих ученых. Электро- и гидродинамика, сейсморазведка и прогноз погоды, моделирование химических соединений, исследование виртуальной реальности - вот далеко не полный список областей науки, исследователи которых используют каждую возможность ускорить выполнение своих программ.
Наиболее перспективным и динамичным направлением увеличения скорости решения прикладных задач является широкое внедрение идей параллелизма в работу вычислительных систем. К настоящему времени спроектированы и опробованы сотни различных компьютеров, использующих в своей архитектуре тот или иной вид параллельной обработки данных. В научной литературе и технической документации можно найти более десятка различных названий, характеризующих лишь общие принципы функционирования параллельных машин: векторно-конвейерные, массивно-параллельные, компьютеры с широким командным словом, систолические массивы, гиперкубы, спецпроцессоры и мультипроцессоры, иерархические и кластерные компьютеры, dataflow, матричные ЭВМ и многие другие. Если же к подобным названиям для полноты описания добавить еще и данные о таких важных параметрах, как, например, организация памяти, топология связи между процессорами, синхронность работы отдельных устройств или способ исполнения арифметических операций, то число различных архитектур станет и вовсе необозримым.
Попытки систематизировать все множество архитектур начались после опубликования М.Флинном первого варианта классификации вычислительных систем в конце 60-х годов и непрерывно продолжаются по сей день. Ясно, что навести порядок в хаосе очень важно для лучшего понимания исследуемой предметной области, однако нахождение удачной классификации может иметь целый ряд существенных следствий.
В самом деле, вспомним открытый в 1869 году Д.И.Менделеевым периодический закон. Выписав на карточках названия химических элементов и указав их важнейшие свойства, он сумел найти такое расположение, при котором четко прослеживалась закономерность в изменении свойств элементов, расположенных в каждом столбце и в каждой строке. Теперь, зная положение какого-либо элемента в таблице, он мог с большой степенью точности описывать его свойства, не проводя с ним никаких непосредственных экспериментов. Другим, поистине фантастическим следствием, явилось то, что данный закон сразу указал на несколько "белых пятен" в таблице и позволил предсказать существование (!) и свойства (!!) неизвестных до тех пор элементов. В 1875 году французский ученый Буабодран, изучая спектры минералов, открыл предсказанный Менделеевым галлий и впервые подробно описал его свойства. В свою очередь Менделеев, никогда прежде не видевший данного химического элемента, не только смог указать на ошибку в определении плотности, но и вычислил ее правильное значение.
Существующая классификация растительного и животного мира, в отличие от периодического закона, носит скорее описательный характер. С ее помощью намного сложнее предсказывать существование нового вида, однако знание того, что исследуемый экземпляр принадлежит такому-то роду/семейству/отряду/классу позволяет оправданно предположить наличие у него вполне определенных свойств.
Подобную классификацию хотелось бы найти и для архитектур параллельных вычислительных систем. Основной вопрос - что заложить в основу классификации, может решаться по-разному, в зависимости от того, для кого данная классификация создается и на решение какой задачи направлена. Так, часто используемое деление компьютеров на персональные ЭВМ, рабочие станции, мини--ЭВМ, большие универсальные ЭВМ, минисупер-ЭВМ и супер-ЭВМ, позволяет, быть может, примерно прикинуть стоимость компьютера. Однако она не приближает пользователя к пониманию того, что от него потребуется для написания программы, работающий на пределе производительности параллельного компьютера, т.е. того, ради чего он и решился его использовать. Как это ни странно, но от обилия разных параллельных компьютеров страдает, прежде всего, конечный пользователь, для которого, вроде бы, они и создавались: он вынужден каждый раз подбирать наиболее эффективный алгоритм, он испытывает на себе "прелести" параллельного программирования и отладки, решает проблемы переносимости и затем все повторяется заново.
Хотелось бы, чтобы такая классификация помогла ему разобраться с тем, что представляет собой каждая архитектура, как они взаимосвязаны между собой, что он должен учитывать для написания действительно эффективных программ или же на какой класс архитектур ему следует ориентироваться для решения требуемого класса задач. Одновременно удачная классификация могла бы подсказать возможные пути совершенствования компьютеров и в этом смысле она должна быть достаточно содержательной. Трудно рассчитывать на нахождение нетривиальных "белых пятен", например, в классификации по стоимости, однако размышления о возможной систематике с точки зрения простоты и технологичности программирования могут оказаться чрезвычайно полезными для определения направлений поиска новых архитектур.
В данной работе не ставилась задача сразу предложить что-то конкретное. Она носит скорее обзорный характер и ее основная задача - это собрать в одном месте накопленый к настоящему времени материал. В работу включены не все найденные классификации, а описаны лишь те, в которых впервые введены какие-либо новые существенные понятия.
1 КЛАССИФИКАЦИИ АРХИТЕКТУР ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
1.1 Классификация Флинна
По-видимому, самой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М.Флинном. Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных Флинн выделяет четыре класса архитектур: SISD,MISD,SIMD,MIMD.
SISD (single instruction stream / single data stream) (рис. 1.1) - одиночный поток команд и одиночный поток данных. К этому классу относятся, прежде всего, классические последовательные машины, или иначе, машины фон-неймановского типа. В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных. Не имеет значения тот факт, что для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка.
Рисунок 1.1 - Архитектура SISD
SIMD (single instruction stream / multiple data stream) (рис. 1.2) - одиночный поток команд и множественный поток данных. В архитектурах подобного рода сохраняется один поток команд, включающий, в отличие от предыдущего класса, векторные команды. Это позволяет выполнять одну арифметическую операцию сразу над многими данными - элементами вектора. Способ выполнения векторных операций не оговаривается, поэтому обработка элементов вектора может производится либо процессорной матрицей, как в ILLIAC IV, либо с помощью конвейера, как, например, в машине CRAY-1.
Рисунок 1.2 - Архитектура SIMD
MISD (multiple instruction stream / single data stream) (рис. 1.3) - множественный поток команд и одиночный поток данных. Определение подразумевает наличие в архитектуре многих процессоров, обрабатывающих один и тот же поток данных. Однако ни Флинн, ни другие специалисты в области архитектуры компьютеров до сих пор не смогли представить убедительный пример реально существующей вычислительной системы, построенной на данном принципе. Ряд исследователей относят конвейерные машины к данному классу, однако это не нашло окончательного признания в научном сообществе.
Рисунок 1.3 - Архитектура MISD
MIMD (multiple instruction stream / multiple data stream) (рис. 1.4) - множественный поток команд и множественный поток данных. Этот класс предполагает, что в вычислительной системе есть несколько устройств обработки команд, объединенных в единый комплекс и работающих каждое со своим потоком команд и данных.
Рисунок 1.4 - Архитектура MIMD
Итак, что же собой представляет каждый класс? В SISD, как уже говорилось, входят однопроцессорные последовательные компьютеры типа VAX 11/780. Однако, многими критиками подмечено, что в этот класс можно включить и векторно-конвейерные машины, если рассматривать вектор как одно неделимое данное для соответствующей команды. В таком случае в этот класс попадут и такие системы, как CRAY-1, CYBER 205, машины семейства FACOM VP и многие другие.
Бесспорными представителями класса SIMD считаются матрицы процессоров: ILLIAC IV, ICL DAP, Goodyear Aerospace MPP, Connection Machine 1 и т.п. В таких системах единое управляющее устройство контролирует множество процессорных элементов. Каждый процессорный элемент получает от устройства управления в каждый фиксированный момент времени одинаковую команду и выполняет ее над своими локальными данными. Для классических процессорных матриц никаких вопросов не возникает, однако в этот же класс можно включить и векторно-конвейерные машины, например, CRAY-1. В этом случае каждый элемент вектора надо рассматривать как отдельный элемент потока данных.
Класс MIMD чрезвычайно широк, поскольку включает в себя всевозможные мультипроцессорные системы: Cm*, C.mmp, CRAY Y-MP, Denelcor HEP, BBN Butterfly, Intel Paragon, CRAY T3D и многие другие. Интересно то, что если конвейерную обработку рассматривать как выполнение множества команд (операций ступеней конвейера) не над одиночным векторным потоком данных, а над множественным скалярным потоком, то все рассмотренные выше векторно-конвейерные компьютеры можно расположить и в данном классе.
Предложенная схема классификации вплоть до настоящего времени является самой применяемой при начальной характеристике того или иного компьютера. Если говорится, что компьютер принадлежит классу SIMD или MIMD, то сразу становится понятным базовый принцип его работы, и в некоторых случаях этого бывает достаточно. Однако видны и явные недостатки. В частности, некоторые заслуживающие внимания архитектуры, например dataflow и векторно-конвейерные машины, четко не вписываются в данную классификацию. Другой недостаток - это чрезмерная заполненность класса MIMD. Необходимо средство, более избирательно систематизирующее архитектуры, которые по Флинну попадают в один класс, но совершенно различны по числу процессоров, природе и топологии связи между ними, по способу организации памяти и, конечно же, по технологии программирования.
Наличие пустого класса (MISD) не стоит считать недостатком схемы. Такие классы, по мнению некоторых исследователей в области классификации архитектур, могут стать чрезвычайно полезными для разработки принципиально новых концепций в теории и практике построения вычислительных систем.
1.2 Дополнения Ванга и Бриггса к классификации Флинна
В книге К.Ванга и Ф.Бриггса сделаны некоторые дополнения к классификации Флинна. Оставляя четыре ранее введенных базовых класса (SISD, SIMD, MISD, MIMD), авторы внесли следующие изменения.
Класс SISD разбивается на два подкласса:
- архитектуры с единственным функциональным устройством, например, PDP-11;
- архитектуры, имеющие в своем составе несколько функциональных устройств - CDC 6600, CRAY-1, FPS AP-120B, CDC Cyber 205, FACOM VP-200.
В класс SIMD также вводится два подкласса:
- архитектуры с пословно-последовательной обработкой информации - ILLIAC IV, PEPE, BSP;
- архитектуры с разрядно-последовательной обработкой - STARAN, ICL DAP.
В классе MIMD авторы различают
- вычислительные системы со слабой связью между процессорами, к которым они относят все системы с распределенной памятью, например, Cosmic Cube,
- и вычислительные системы с сильной связью (системы с общей памятью), куда попадают такие компьютеры, как C.mmp, BBN Butterfly, CRAY Y-MP, Denelcor HEP.
1.3 Классификация Фенга
В 1972 году Т.Фенг предложил классифицировать вычислительные системы на основе двух простых характеристик. Первая - число бит n в машинном слове, обрабатываемых параллельно при выполнении машинных инструкций. Практически во всех современных компьютерах это число совпадает с длиной машинного слова. Вторая характеристика равна числу слов m, обрабатываемых одновременно данной вычислительной системой. Немного изменив терминологию, функционирование любого компьютера можно представить как параллельную обработку n битовых слоев, на каждом из которых независимо преобразуются m бит. Опираясь на такую интерпретацию, вторую характеристику обычно называют шириной битового слоя.
Если рассмотреть предельные верхние значения данных характеристик, то каждую вычислительную систему C можно описать парой чисел (n,m) и представить точкой на плоскости в системе координат длина слова - ширина битового слоя. Площадь прямоугольника со сторонами n и m определяет интегральную характеристику потенциала параллельности P архитектуры и носит название максимальной степени параллелизма вычислительной системы: P(C)=mn. По существу, данное значение есть ничто иное, как пиковая производительность, выраженная в других единицах. В период появления данной классификации, а это начало 70-х годов, еще казалось возможным перенести понятие пиковой производительности как универсального средства сравнения и описания потенциальных возможностей компьютеров с традиционных последовательных машин на параллельные. Понимание того факта, что пиковая производительность сама по себе не столь важна, пришло позднее, и данный подход отражает, естественно, степень осмысления специфики параллельных вычислений того времени.
На основе введенных понятий все вычислительные системы в зависимости от способа обработки информации, заложенного в их архитектуру, можно разделить на четыре класса:
- разрядно-последовательные пословно-последовательные (n=m=1). В каждый момент времени такие компьютеры обрабатывают только один двоичный разряд. Представителем данного класса служит давняя система MINIMA с естественным описанием (1,1);
- разрядно-параллельные пословно-последовательные (n>1, m=1). Большинство классических последовательных компьютеров, так же как и многие вычислительные системы, эксплуатируемые до сих пор, принадлежит к данному классу: IBM 701 с описанием (36,1), PDP-11 (16,1), IBM 360/50 и VAX 11/780 - обе с описанием (32,1);
- разрядно-последовательные пословно-параллельные (n=1, m>1). Как правило вычислительные системы данного класса состоят из большого числа одноразрядных процессорных элементов, каждый из которых может независимо от остальных обрабатывать свои данные. Типичными примерами служат STARAN (1, 256) и MPP (1,16384) фирмы Goodyear Aerospace, прототип известной системы ILLIAC IV компьютер SOLOMON (1, 1024) и ICL DAP (1, 4096);
- разрядно-параллельные пословно-параллельные (n>1, m>1). Большая часть существующих параллельных вычислительных систем, обрабатывая одновременно mn двоичных разрядов, принадлежит именно к этому классу: ILLIAC IV (64, 64), TI ASC (64, 32), C.mmp (16, 16), CDC 6600 (60, 10), BBN Butterfly GP1000 (32, 256).
Недостатки предложенной классификации достаточно очевидны и связаны со способом вычисления ширины битового слоя m. По существу Фенг не делает никакого различия между процессорными матрицами, векторно-конвейерными и многопроцессорными системами. Не делается акцент на том, за счет чего компьютер может одновременно обрабатывать более одного слова: множественности функциональных устройств, их конвейерности или же какого-то числа независимых процессоров. Если в системе N независимых процессоров имеют каждый по F конвейерных функциональных устройств с длиной конвейера L, то для вычисления ширины битового слоя надо просто найти произведение данных характеристик.
Конечно же, опираясь на данную классификацию, достаточно трудно (а иногда и невозможно) осознать специфику той или иной вычислительной системы. Однако достоинством является введение единой числовой метрики для всех типов компьютеров, которая вместе с описанием потенциала вычислительных возможностей конкретной архитектуры позволяет сравнить любые два компьютера между собой.
1.4 Классификация Шора
Классификация Дж.Шора, появившаяся в начале 70-х годов, интересна тем, что представляет собой попытку выделения типичных способов компоновки вычислительных систем на основе фиксированного числа базисных блоков: устройства управления, арифметико-логического устройства, памяти команд и памяти данных. Дополнительно предполагается, что выборка из памяти данных может осуществляться словами, то есть выбираются все разряды одного слова, и/или битовым слоем - по одному разряду из одной и той же позиции каждого слова (иногда эти два способа называют горизонтальной и вертикальной выборками соответственно). Конечно же, при анализе данной классификации надо делать скидку на время ее появления, так как предусмотреть невероятное разнообразие параллельных систем настоящего времени было в принципе невозможно. Итак, согласно классификации Шора все компьютеры разбиваются на шесть классов, которые он так и называет: машина типа I, II и т.д.
Машина I (рис. 1.5) - это вычислительная система, которая содержит устройство управления, арифметико-логическое устройство, память команд и память данных с пословной выборкой. Считывание данных осуществляется выборкой всех разрядов некоторого слова для их параллельной обработки в арифметико-логическом устройстве. Состав АЛУ специально не оговаривается, что допускает наличие нескольких функциональных устройств, быть может конвейерного типа. По этим соображениям в данный класс попадают как классические последовательные машины (IBM 701, PDP-11, VAX 11/780), так и конвейерные скалярные (CDC 7600) и векторно-конвейерные (CRAY-1).
Рисунок 1.5 - Машина I
Если в машине I осуществлять выборку не по словам, а выборкой содержимого одного разряда из всех слов, то получим машину II (рис. 1.6) . Слова в памяти данных по прежнему располагаются горизонтально, но доступ к ним осуществляется иначе. Если в машине I происходит последовательная обработка слов при параллельной обработке разрядов, то в машине II - последовательная обработка битовых слоев при параллельной обработке множества слов.
Рисунок 1.6 - Машина II
Структура машины II лежит в основе ассоциативных компьютеров (например, центральный процессор машины STARAN), причем фактически такие компьютеры имеют не одно арифметико-логическое устройство, а множество сравнительно простых устройств поразрядной обработки. Другим примером служит матричная система ICL DAP, которая может одновременно обрабатывать по одному разряду из 4096 слов.
Если объединить принципы построения машин I и II, то получим машину III (рис. 1.7). Эта машина имеет два арифметико-логических устройства - горизонтальное и вертикальное, и модифицированную память данных, которая обеспечивает доступ как к словам, так и к битовым слоям. Впервые идею построения таких систем в 1960 году выдвинул У.Шуман , называвший их ортогональными (если память представлять как матрицу слов, то доступ к данным осуществляется в направлении, "ортогональном" традиционному - не по словам (строкам), а по битовым слоям (столбцам)). В принципе, как машину STARAN, так и ICL DAP можно запрограммировать на выполнение функций машины III, но поскольку они не имеют отдельных АЛУ для обработки слов и битовых слоев, отнести их к данному классу нельзя. Полноправными представителями машин класса III являются вычислительные системы семейства OMEN-60 фирмы Sanders Associates, построенные в прямом соответствии с концепцией ортогональной машины.
Рисунок 1.7 - Машина III
Если в машине I увеличить число пар арифметико-логическое устройство <=> память данных (иногда эту пару называют процессорным элементом) то получим машину IV (рис. 1.8). Единственное устройство управления выдает команду за командой сразу всем процессорным элементам. С одной стороны, отсутствие соединений между процессорными элементами делает дальнейшее наращивание их числа относительно простым, но с другой, сильно ограничивает применимость машин этого класса. Такую структуру имеет вычислительная система PEPE, объединяющая 288 процессорных элементов.
Рисунок 1.8 - Машина IV
Если ввести непосредственные линейные связи между соседними процессорными элементами машины IV, например в виде матричной конфигурации, то получим схему машины V (рис. 1.9). Любой процессорный элемент теперь может обращаться к данным как в своей памяти, так и в памяти непосредственных соседей. Подобная структура характерна, например, для классического матричного компьютера ILLIAC IV.
Рисунок 1.9 - Машина V
Заметим, что все машины с I-ой по V-ю придерживаются концепции разделения памяти данных и арифметико-логических устройств, предполагая наличие шины данных или какого-либо коммутирующего элемента между ними. Машина VI (рис. 1.10), названная матрицей с функциональной памятью (или памятью с встроенной логикой), представляет собой другой подход, предусматривающий распределение логики процессора по всему запоминающему устройству. Примерами могут служить как простые ассоциативные запоминающие устройства, так и сложные ассоциативные процессоры.
Рисунок 1.10 - Машина VI
1.5 Классификация Хендлера
В основу классификации В.Хендлер закладывает явное описание возможностей параллельной и конвейерной обработки информации вычислительной системой. При этом он намеренно не рассматривает различные способы связи между процессорами и блоками памяти и считает, что коммуникационная сеть может быть нужным образом сконфигурирована и будет способна выдержать предполагаемую нагрузку.
Предложенная классификация базируется на различии между тремя уровнями обработки данных в процессе выполнения программ:
- уровень выполнения программы - опираясь на счетчик команд и некоторые другие регистры, устройство управления (УУ) производит выборку и дешифрацию команд программы;
- уровень выполнения команд - арифметико-логическое устройство компьютера (АЛУ) исполняет команду, выданную ему устройством управления;
- уровень битовой обработки - все элементарные логические схемы процессора (ЭЛС) разбиваются на группы, необходимые для выполнения операций над одним двоичным разрядом.
Рисунок 1.11 - Принцип классификации Хендлера
Таким образом, подобная схема выделения уровней предполагает, что вычислительная система включает какое-то число процессоров каждый со своим устройством управления. Каждое устройство управления связано с несколькими арифметико-логическими устройствами, исполняющими одну и ту же операцию в каждый конкретный момент времени. Наконец, каждое АЛУ объединяет несколько элементарных логических схем, ассоциированных с обработкой одного двоичного разряда (число ЭЛС есть ничто иное, как длина машинного слова). Если на какое-то время не рассматривать возможность конвейеризации, то число устройств управления k , число арифметико-логических устройств d в каждом устройстве управления и число элементарных логических схем w в каждом АЛУ составят тройку для описания данной вычислительной системы C:
t(C) = (k, d, w)
Теперь можно расширить возможности описания, допустив возможность конвейерной обработки на каждом из уровней. В самом деле, конвейерность на самом нижнем уровне (т.е. на уровне ЭЛС) это конвейерность функциональных устройств. Если функциональное устройство обрабатывает w-разрядные слова на каждой из w ступеней конвейера, то для характеристики параллелизма данного уровня естественно рассмотреть произведение wЧw. Знак умножения Ч будем использовать на каждом уровне чтобы отделить число, представляющее степень параллелизма, от числа ступеней в конвейере. Компьютер TI ASC имеет четыре конвейерных устройства по восемь ступеней в каждом для обработки 64-х разрядных слов, следовательно, он может быть описан так:
t( TI ASC ) = (1,4,64Ч8)
Следующий уровень конвейерной обработки - это конвейеризация на уровне команд. Предполагается, что в вычислительной системе есть несколько функциональных устройств, которые могут работать одновременно в рамках одного потока команд (в настоящее время используется специальный термин для обозначения данной возможности - сцепление функциональных устройств). Классическим примером этому могут служить компьютеры фирмы Cray Research. А исторически первой, по всей вероятности, является машина CDC 6600, содержащая десять независимых последовательных функциональных устройств, способных подавать результат своей работы на вход другим функциональным устройствам, образуя единый поток команд:
t(CDC 6600) = (1,1Ч10,~64)
Наконец, осталось рассмотреть конвейеризацию на самом верхнем уровне, известную как макро-конвейер. Поток данных, проходя через один процессор, поступает на вход другому, возможно через некоторую буферную память. Если независимо работают n процессоров, то в идеальной ситуации при отсутствии конфликтов и полной сбалансированности получаем ускорение в n раз по сравнению с использованием только одного процессора. Так компьютер PEPE, имея фактически три независимых системы из 288-ми устройств, описывается следующим образом:
t( PEPE ) = (1Ч3,288,32)
После расширения трехуровневой модели параллелизма средствами описания потенциальных возможностей конвейеризации каждая тройка t( PEPE ) = (kЧk,dЧd,wЧw) интерпретируется так:
- k - число процессоров (каждый со своим УУ), работающих параллельно
- k - глубина макроконвейера из отдельных процессоров
- d - число АЛУ в каждом процессоре, работающих параллельно
- d - число функциональных устройств АЛУ в цепочке
- w - число разрядов в слове, обрабатываемых в АЛУ параллельно
- w - число ступеней в конвейере функциональных устройств АЛУ
1.6 Классификация Хокни
Р. Хокни - известный английский специалист в области параллельных вычислительных систем, разработал свой подход к классификации, введенной им для систематизации компьютеров, попадающих в класс MIMD по систематике Флинна.
Как отмечалось выше (см. классификацию Флинна), класс MIMD чрезвычайно широк, причем наряду с большим числом компьютеров он объединяет и целое множество различных типов архитектур. Хокни, пытаясь систематизировать архитектуры внутри этого класса, получил иерархическую структуру, представленную на рис. 1.12:
Рисунок 1. 12 - Иерархическая структура класса MIMD
Основная идея классификации состоит в следующем. Множественный поток команд может быть обработан двумя способами: либо одним конвейерным устройством обработки, работающем в режиме разделения времени для отдельных потоков, либо каждый поток обрабатывается своим собственным устройством. Первая возможность используется в MIMD компьютерах, которые автор называет конвейерными (например, процессорные модули в Denelcor HEP). Архитектуры, использующие вторую возможность, в свою очередь опять делятся на два класса:
- MIMD компьютеры, в которых возможна прямая связь каждого процессора с каждым, реализуемая с помощью переключателя;
- MIMD компьютеры, в которых прямая связь каждого процессора возможна только с ближайшими соседями по сети, а взаимодействие удаленных процессоров поддерживается специальной системой маршрутизации через процессоры-посредники.
Далее, среди MIMD машин с переключателем Хокни выделяет те, в которых вся память распределена среди процессоров как их локальная память (например, PASM, PRINGLE). В этом случае общение самих процессоров реализуется с помощью очень сложного переключателя, составляющего значительную часть компьютера. Такие машины носят название MIMD машин с распределенной памятью. Если память это разделяемый ресурс, доступный всем процессорам через переключатель, то такие MIMD являются системами с общей памятью (CRAY X-MP, BBN Butterfly). В соответствии с типом переключателей можно проводить классификацию и далее: простой переключатель, многокаскадный переключатель, общая шина.
Многие современные вычислительные системы имеют как общую разделяемую память, так и распределенную локальную. Такие системы автор рассматривает как гибридные MIMD c переключателем.
При рассмотрении MIMD машин с сетевой структурой считается, что все они имеют распределенную память, а дальнейшая классификация проводится в соответствии с топологией сети: звездообразная сеть (lCAP), регулярные решетки разной размерности (Intel Paragon, CRAY T3D), гиперкубы (NCube, Intel iPCS), сети с иерархической структурой, такой, как деревья, пирамиды, кластеры (Cm* , CEDAR) и, наконец, сети, изменяющие свою конфигурацию.
Заметим, что если архитектура компьютера спроектирована с использованием нескольких сетей с различной топологией, то, по всей видимости, по аналогии с гибридными MIMD с переключателями, их стоит назвать гибридными сетевыми MIMD, а использующие идеи разных классов - просто гибридными MIMD. Типичным представителем последней группы, в частности, является компьютер Connection Machine 2, имеющим на внешнем уровне топологию гиперкуба, каждый узел которого является кластером процессоров с полной связью.
1.7 Классификация Шнайдера
В 1988 году Л. Шнайдер предложил новый подход к описанию архитектур параллельных вычислительных систем, попадающих в класс SIMD систематики Флинна. Основная идея заключается в выделении этапов выборки и непосредственно исполнения в потоках команд и данных. Именно разделение потоков на адреса и их содержимое позволяет описать такие ранее "неудобные" для классификации архитектуры, как компьютеры с длинным командным словом, систолические массивы и целый ряд других.
Введем необходимые для дальнейшего изложения понятия и обозначения. Назовем потоком ссылок ( reference stream ) S некоторой вычислительной системы конечное множество бесконечных последовательностей пар:
S = { (a1???t1???) (a2???t2???)..., (b1???u1???) (b2???u2???)..., (c1???v1???)(c2???v2???)...},
где первый компонент каждой пары - это неотрицательное целое число, называемое адресом, второй компонент - это набор из n неотрицательных целых чисел, называемых значениями, причем n одинаково для всех наборов всех последовательностей. Например, пара (b2???u2???) определяет адрес b2 и значение ??u2???. Если значения рассматривать как команды, то из потока ссылок получим поток команд I; если же значения интерпретировать как данные, то соответствующий поток - это поток данных D.
Интерпретация введенных понятий очень проста. Элементы каждой последовательности это адрес и его содержимое, выбираемое из (или записываемое в) память. Последовательность пар адрес-значение можно рассматривать как историю выполнения команд либо перемещения данных между процессором и памятью компьютера во время выполнения программы. Число инструкций, которое данный компьютер может выполнять одновременно, определяет число последовательностей в потоке команд. Аналогично, число различных данных, которое компьютер может обработать одновременно, определяет число последовательностей в потоке данных.
Пусть S произвольный поток ссылок. Последовательность адресов потока S, обозначаемая Sa, - это последовательность, чей i-й элемент - набор, сформированный из адресов i-х элементов каждой последовательности из S:
Sa = ??a1 b1 ...c1 ??,???a2 b2 ...c2 ??,...
потока S, обозначаемая Sv, - это последовательность, чей i-й элемент - набор, образованный слиянием наборов значений i-х элементов каждой последовательности из S:
Sv = ??t1 u1 ...v1???,???t2 u2 ...v2 ??,...
Если Sx - последовательность элементов, где каждый элемент - набор из n чисел, то для обозначения "ширины" последовательности будем пользоваться обозначением: w(Sx) = n.
Из определений Sa, Sv и w сразу следует утверждение: если S - это поток ссылок со значениями из n чисел, то
w(Sa) = ?S? и w(Sv) = n?S?,
где ?S? обозначает мощность множества S.
Каждую пару (I, D) с потоком команд I и потоком данных D будем называть вычислительным шаблоном, а все компьютеры будем разбивать на классы в зависимости от того, какой шаблон они могут исполнить. В самом деле, компьютер может исполнить шаблон (I, D), если он в состоянии:
- выдать w(Ia) адресов команд для одновременной выборки из памяти;
- декодировать и проинтерпретировать одновременно w(Iv) команд;
- выдать одновременно w(Da) адресов операндов и
- выполнить одновременно w(Dv) операций над различными данными.
Если все эти условия выполнены, то компьютер может быть описан следующим образом:
Iw(Ia)w(Iv)Dw(Da)w(Dv)
На основе указанных предикатов можно выделить следующие классы компьютеров:
- IssDss - фон-неймановские машины;
- IssDsc - фон-неймановские машины, в которых заложена возможность выбирать данные, расположенные с разным смещением относительно одного и того же адреса, над которыми будет выполнена одна и та же операция. Примером могут служить компьютеры, имеющие команды, типа одновременного выполнения двух операций сложения над данными в формате полуслова, расположенными по указанному адресу.
- IssDsm - SIMD компьютеры без возможности получения уникального адреса для данных в каждом процессорном элементе, включающие MPP, Connection Machine 1 так же, как и систолические массивы.
- IssDcc - многомерные SIMD машины - фон-неймановские машины, способные расщеплять поток данных на независимые потоки операндов;
- IssDmm - это SIMD компьютеры, имеющие возможность независимой модификации адресов операндов в каждом процессорном элементе, например, ILLIAC IV и Connection Machine 2.
- IscDcc - вычислительные системы, выбирающие и исполняющие одновременно несколько команд, для доступа к которым используется один адрес. Типичным примером являются компьютеры с длинным командным словом (VLIW).
- IccDcc - многомерные MIMD машины. Фон-неймановские машины, которые могут расщеплять свой цикл выборки/выполнения с целью обработки параллельно нескольких независимых команд.
- ImmDmm - к этому классу относятся все компьютеры типа MIMD.
Достаточно ясно, что не нужно рассматривать все возможные комбинации описателей s, c и m, так как архитектура реальных компьютеров накладывает ряд вполне разумных ограничений. Очевидно, что число адресов w(Sa) не должно превышать числа возвращенных значений w(Sv), которое компьютер может обработать. Отсюда следуют неравенства: w(Ia)<=w(Iv) и w(Da)<=w(Dv). Другим естественным предположением является тот факт, что число выполняемых команд не должно превышать числа обрабатываемых данных: w(Iv) <= w(Dv).
Подводя итог, можно отметить два положительных момента в классификации Шнайдера: более избирательная систематизация SIMD компьютеров и возможность описания нетрадиционных архитектур типа систолических массивов или компьютеров с длинным командным словом. Однако почти все вычислительные системы типа MIMD опять попали в один и тот же класс ImmDmm. Это и не удивительно, так как критерий классификации, основанный лишь на потоках команд и данных без учета распределенности памяти и топологии межпроцессорной связи, слишком слаб для подобных систем.
1.8 Классификация Джонсона
Е.Джонсон предложил проводить классификацию MIMD архитектур на основе структуры памяти и реализации механизма взаимодействия и синхронизации между процессорами.
По структуре оперативной памяти существующие вычислительные системы делятся на две большие группы: либо это системы с общей памятью, прямо адресуемой всеми процессорами, либо это системы с распределенной памятью, каждая часть которой доступна только одному процессору. Одновременно с этим, и для межпроцессорного взаимодействия существуют две альтернативы: через разделяемые переменные или с помощью механизма передачи сообщений. Исходя из таких предположений, можно получить четыре класса MIMD архитектур, уточняющих систематику Флинна:
- общая память - разделяемые переменные (GMSV);
- распределенная память - разделяемые переменные (DMSV);
- распределенная память - передача сообщений (DMMP);
- общая память - передача сообщений (GMMP).
Опираясь на такое деление, Джонсон вводит названия для некоторых классов. Так вычислительные системы, использующие общую разделяемую память для межпроцессорного взаимодействия и синхронизации, он называет системами с разделяемой памятью, например, CRAY Y-MP (по его классификации это класс 1). Системы, в которых память распределена по процессорам, а для взаимодействия и синхронизации используется механизм передачи сообщений он называет архитектурами с передачей сообщений, например NCube, (класс 3). Системы с распределенной памятью и синхронизацией через разделяемые переменные, как в BBN Butterfly, называются гибридными архитектурами (класс 2).
В качестве уточнения классификации автор отмечает возможность учитывать вид связи между процессорами: общая шина, переключатели, разнообразные сети и т.п.
1.9 Классификация Базу
По мнению А.Базу, любую параллельную вычислительную систему можно однозначно описать последовательностью решений, принятых на этапе ее проектирования, а сам процесс проектирования представить в виде дерева. В самом деле, корень дерева - это вычислительная система (рис. 1.13), а последующие ярусы дерева, фиксируя уровень параллелизма, метод реализации алгоритма, параллелизм инструкций и способ управления, последовательно дополняют друг друга, формируя описание системы.
Рисунок 1.13 - Классификация Базу
На первом этапе мы определяем, какой уровень параллелизма используется в вычислительной системе. Одна и та же операция может одновременно выполняться над целым набором данных, определяя параллелизм на уровне данных (обозначается буквой D на рисунке). Способность выполнять более одной операции одновременно говорит о параллелизме на уровне команд (буква O на рисунке). Если же компьютер спроектирован так, что целые последовательности команд могут быть выполнены одновременно, то будем говорить о параллелизме на уровне задач (буква T).
Второй уровень в классификационном дереве фиксирует метод реализации алгоритма. С появлением сверхбольших интегральных схем (СБИС) стало возможным реализовывать аппаратно не только простые арифметические операции, но и алгоритмы целиком. Например, быстрое преобразование Фурье, произведение матриц и LU-разложение относятся к классу тех алгоритмов, которые могут быть эффективно реализованы в СБИСах. Данный уровень классификации разделяет системы с аппаратной реализацией алгоритмов (буква C на схеме) и системы, использующие традиционный способ программной реализации (буква P).
Третий уровень конкретизирует тип параллелизма, используемого для обработки инструкций машины: конвейеризация инструкций (Pi) или их независимое (параллельное) выполнение (Pa). В большей степени этот выбор относится к компьютерам с программной реализацией алгоритмов, так как аппаратная реализация всегда предполагает параллельное исполнение команд. Отметим, что в случае конвейерного исполнения имеется в виду лишь конвейеризация самих команд, разбивающая весь цикл обработки на выборку команды, дешифрацию, вычисление адресов и т.д., - возможная конвейеризация вычислений на данном уровне не принимается во внимание.
Последний уровень данной классификации определяет способ управления, принятый в вычислительной системе: синхронный (S) или асинхронный (A). Если выполнение команд происходит в строгом порядке, определяемом только сигналами таймера и счетчиком команд, то будем говорить о синхронном способе управления. Если же для инициации команды определяющими являются такие факторы, как, например, готовность данных, то попадаем в класс машин с асинхронным управлением. Наиболее характерными представителями систем с асинхронным управлением являются data-driven и demand-driven компьютеры
Описав основные принципы классификации, посмотрим, куда попадают различные типы параллельных вычислительных систем.
Изучение систолических массивов, имеющих, как правило, одномерную или двумерную структуру, показывает, что обозначения DCPaS и DCPaA могут быть использованы для их описания в зависимости от того, как происходит обмен данными: синхронно или асинхронно. Систолические деревья, введенные Кунгом для вычисления арифметических выражений могут быть описаны как OCPaS либо OCPaA по аналогичным соображениям. Конвейерные компьютеры, такие, как IBM 360/91, Amdahl 470/6 и многие современные RISC процессоры, разбивающие исполнение всех инструкций на несколько этапов, в данной классификации имеют обозначение OPPiS. Более естественное применение конвейеризации происходит в векторных машинах, в которых одна команда применяется к вектору независимых данных, и за счет непрерывного использования арифметического конвейера достигается значительное ускорение. К таким компьютерам подходит обозначение DPPiS. Матричные процессоры, в которых целое множество арифметических устройств работает одновременно в строго синхронном режиме, принадлежат к группе DPPaS. Если вычислительная система подобно CDC 6600 имеет процессор с отдельными функциональными устройствами, управляемыми централизованно, то ее описание выглядит так: OPPaS. Data-flow компьютеры, в зависимости от особенностей реализации, могут быть описаны либо как OPPiA, либо OPPaA.
Системы с несколькими процессорами, использующими параллелизм на уровне задач, не всегда можно корректно описать в рамках предложенного формализма. Если процессоры дополнительно не используют параллелизм на уровне операций или данных, то для описания можно использовать лишь букву T. В противном случае, Базу предлагает использовать знак * между символами, обозначающими уровни параллелизма, одновременно присутствующие в системе. Например, комбинация T*D означает, что некоторая система может одновременно исполнять несколько задач, причем каждая из них может использовать векторные команды.
Очень часто в реальных системах присутствуют особенности, характерные для компьютеров из разных групп данной классификации. В этом случае для корректного описания автор использует знак +. Например, практически все векторные компьютеры имеют скалярную и векторную части, что можно описать как OPPiS+DPPiS (пример - это TI ASC и CDC STAR-100). Если в системе есть возможность одновременного выполнения более одной векторной команды (как в CRAY-1) то для описания векторной части можно использовать запись O*DPPiS, а полное описание данного компьютера выглядит так: O*DPPiS+OPPiS. Действуя по такому же принципу, можно найти описание и для систем CRAY X-MP и CRAY Y-MP. В самом деле, данные системы объединяют несколько процессоров, имеющих схожую с CRAY-1 структуру, и потому их описание имеет вид: T*(O*DPPiS+OPPiS).
1.10 Классификация Кришнамарфи
Е.Кришнамарфи для классификации параллельных вычислительных систем предлагает использовать четыре характеристики, очень похожие на характеристики классификации А.Базу:
Страницы: [1] | 2 | 3 |
|